以下为《《命题》教学设计》的无排版文字预览,完整内容请下载
13.1? 命题、定理与证明
第一课时 命题
【教学目标】
1、知识与技能:了解命题的含义;对命题的概念有正确的理解.会区分命题的条件和结论.知道判断一个命题是假命题的方法.
2、过程与方法: 结合实例让学生意识到证明的必要性,培养学生说理有据,有条理地表达自己想法的良好意识.
3、情感、态度与价值观:? 初步感受公理化方法对数学发展和人类文明的价值.
【重点难点】
1、重点:找出命题的条件(题设)和结论.
2、难点:命题概念的理解.
【教学过程】
一、复习引入
教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等.根据我们已学过的图形特性,试判断下列句子是否正确.
1、如果两个角是对顶角,那么这两个角相等;
2、两直线平行,同位角相等;
3、同旁内角相等,两直线平行;
4、平行四边形的对角线相等;
5、直角都相等.
二、探究新知
(一)命题、真命题与假命题
学生回答后,教师给出答案:根据已有的知识可以判断出句子1、2、5是正确的,句子3、4水错误的.像这样可以判断出它是正确的还是错误的句子叫做命题,正确的命题称为真命题,错误的命题称为假命题.
教师:在数学中,许多命题是由题设(或已知条件)、结 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 面积相等.
学生小组交流后回答,学生回答后,教师给出答案.
(1)条件:如果两个角是对顶角;结论:那么这两个角相等,这是真命题.
(2)条件:如果a> b,b> c;结论:那么a=c;这是假命题.
(3)条件:如果一个四边形是菱形;结论:那么这个四边形的四条边相等.这是真命题.
(4)条件:如果两个三角形全等;结论:那么它们的面积相等,这是真命题.
(三)假命题的证明
教师讲解:要判断一个命题是真命题,可以用逻辑推理的方法加以论证;而要判断一个命题是假命题,只要举出一个例子,说明该命题不成立,即只要举出一个符合该命题题设而不符合该命题结论的例子就可以了,在数学中,这种方法称为“举反例”.
例如,要证明命题“一个锐角与一个钝角的和等于一个平角”是假命题,只要举出一个反例:60度角是锐角,100度角是钝角,但它们的和不是180度即可.
三、随堂练习
课本P55练习第1、2题.
四、总结
1、什么叫命题?什么叫真命题?什么叫假命题?
2、命题都可以写成“如果.....,那么.......”的形式.
3、要判断一个命题是假命题,只要举出一个反例就行了.
五、布置作业
课本P58 习题13.1 1、2
预习 2.定理与证明 并尝试完成练习1
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《《命题》教学设计》的无排版文字预览,完整内容请下载
《命题》教学设计由用户“laisy”分享发布,转载请注明出处