以下为《11.3.2 多边形的内角和2导学案》的无排版文字预览,完整内容请下载
11.3.2 多边形的内角和
教学目标
知识与技能
1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些较简单的问题;
过程与方法
通过多边形内角和计算公式的推导,培养学生探索与归纳能力
情感态度价值观
通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质
教学重点
多边形的内角和以及外角和
教学难点
如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和
教学准备
学生:量角器、直尺(三角尺);教师:教具(全等四边形四个)。
教学过程(师生活动)
设计理念
创设情境引入新课
1. (1)你知道三角形的内角和是多少度吗?
【三角形的内角和等于180°】
(2)长方形的内角和等于 ,正方形的内角和等于
2、你知道任意一个四边形的内角和是多少吗?通过今天的学习我们就能明白其中的一些道理,引出课题.
利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去
新课教学
1. 探索四边形的内角和
学生叙述对四边形内角和的认识.
(如:通过测量相加求内角和,通过画四边形对角线分成两个三角形来计算内角和等).
建议:①对于学生提出的不同方法加以及时肯定;②对于通过“分割转化”来求内角和的方法加以强调,并提出是数学学习中的一种常用方法;
③可以启示学生用其他方法证明四边形内角和为360度
A
内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 合作探究
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?
已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
/
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
/
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
求:∠1+∠2+∠3+∠4+∠5+∠6的值.
分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
/
巩固练习
教材24页练习1、2、3.
巩固新知识;
小结与作业
课堂小结
学生回顾本节课所学内容(包括数学思想方法)
本课作业
1.必做题:
2.选做题:
/
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《11.3.2 多边形的内角和2导学案》的无排版文字预览,完整内容请下载
11.3.2 多边形的内角和2导学案由用户“绁哄u傚畂胦q”分享发布,转载请注明出处