以下为《《从分数到分式》教学设计》的无排版文字预览,完整内容请下载
《从分数到分式》教学设计
中原九年制学校 陶某某
教学目标:
了解分式的概念,并能正确判断一个代数式是否为分式,能区分整式与分式;
能熟练地求出分式有意义的条件,分式的值为零的条件;
以描述实际问题中的数量关系为背景,抽象出分式的概念,体会是刻画现实世界中数量关系的一类代数;
经历与分数类比学习分式的过程,养成缜密的思维习惯,形成类比思想,体验数学的价值;
通过丰富的现实情境,在已有数学经验的基础上,了解数学的价值,发展“用数学”的信心.
教学重点:
分式的概念及分式有意义的条件。
教训难点:
理解和掌握分式值为0时的条件.
教法与学法:
课堂引入--讲授新课--学生解决问题--巩固新知--再探新知--课堂小结.
教学准备:
多媒体与教学课件
教学过程:
创设情景,引入新课:
填空:(1)小明同学参加50米赛跑
如果小明的速度是7米/秒,那么他所用的时间是( )秒;
如果小明的速度是a米/秒,那么他所用的时间是( )秒;
如果小明原来的速度是a米/秒,经过训练的速度每秒增加了1米,那么他现 在所用的时间是( )秒.
老师若把体积为200 cm3的水倒入底面积为33 cm2的圆柱形保温桶中,水面高度为( )cm;若把体积为V 的水倒入 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。
解:⑴要使分式 有意义,则分母,即;
(2)要使分式 有意义,则分母,即;
变式训练:
已知分式
(1)当为何值时,分式有意义?
(2)当为何值时,分式值为0?
(三)分式值为0:
当分子A=0且分母B≠0时,分式 的值为零.
课堂练习:
1、课本128页练习1,2,3
2、拓展练习:
当取何值时,下列分式 的值为0
课堂小结:
通过本节课的学习你有哪些收获?(知识与思想方法)
布置作业:
必做题:课本第133页习题15.1第1、2、3题
选做题:当是什么值时,分式的值是0?
六、板书设计:
15.1.1从分数到分式
分式的概念
(1)是 (即A÷B)的形式 例题讲解
(2)分子A与分母B都是整式 例2
(3)分母 B中含有字母
2、分式的意义:
当B=0时,分式 无意义. 变式训练
当B≠0时,分式 有意义.
3、分式值为0:
当A=0而 B≠0时,分式 的值为零.
七、课后反思:
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《《从分数到分式》教学设计》的无排版文字预览,完整内容请下载
《从分数到分式》教学设计由用户“caomendatou”分享发布,转载请注明出处