以下为《二次根式教学设计》的无排版文字预览,完整内容请下载
二次根式教学设计
教学内容
二次根式的概念及其运用
教学目标
1.理解二次根式的概念,并利用(a≥0)的意义解答具体题目.
2.提出问题,根据问题给出概念,应用概念解决实际问题.
教学重点,难点
1.重点: 形如(a≥0)的式子叫做二次根式的概念;
2.难点: 利用“(a≥0)”解决具体问题.
教学过程
一、复习引入
(学生活动)请同学们独立完成下列三个问题:
问题1:已知反比例函数y= 那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.
问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.
问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.
老师点评:
问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 ,所以3x-1≥0,才能有意义.
解:由3x-1≥0,得:x≥
当x≥时,在实数范围内有意义.
三、巩固练习
教材P练习1、2、3.
四、应用拓展
例3.当x是多少时,+在实数范围内有意义?
分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.
解:依题意,得
由①得:x≥-
由②得:x≠-1
当x≥-且x≠-1时,+在实数范围内有意义.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a2004+b2004的值.(答案:)
五、归纳小结(学生活动,老师点评)
本节课要掌握:
1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
六、布置作业
1.教材P8复习巩固1、综合应用5.
2.课后作业:《同步训练》
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《二次根式教学设计》的无排版文字预览,完整内容请下载
二次根式教学设计由用户“hellookbaby”分享发布,转载请注明出处