以下为《小学数学奥数知识总结手册》的无排版文字预览,完整内容请下载
目录 和差倍问题....................................................................................................................................... 2 年龄问题的三个基本特征............................................................................................................... 2 归一问题的基本特点....................................................................................................................... 2 植树问题........................................................................................................................................... 2 鸡兔同笼问题................................................................................................................................... 2 盈亏问题........................................................................................................................................... 3 牛吃草问题....................................................................................................................................... 3 周期循环与数表规律....................................................................................................................... 3 平均数............................................................................................................................................... 4 抽屉原理........................................................................................................................................... 4 定义新运算....................................................................................................................................... 4 数列求和........................................................................................................................................... 4 二进制及其应用............................................................................................................................... 5 加法乘法原理和几何计数............................................................................................................... 5 质数与合数....................................................................................................................................... 6 约数与倍数....................................................................................................................................... 6 数的整除........................................................................................................................................... 7 余数及其应用................................................................................................................................... 7 余数、同余与周期........................................................................................................................... 8 分数与百分数的应用....................................................................................................................... 8 分数大小的比较............................................................................................................................... 9 分数拆分........................................................................................................................................... 9 完全平方数....................................................................................................................................... 9 比和比例......................................................................................................................................... 10 综合行程......................................................................................................................................... 10 工程问题......................................................................................................................................... 10 逻辑推理......................................................................................................................................... 11 几何面积......................................................................................................................................... 11 立体图形......................................................................................................................................... 11 时钟问题—快慢表问题................................................................................................................. 12 时钟问题—钟面追及..................................................................................................................... 12 浓度与配比..................................................................................................................................... 12 经济问题......................................................................................................................................... 13 简单方程......................................................................................................................................... 13 不定方程......................................................................................................................................... 13 循环小数......................................................................................................................................... 14 和差倍问题 已知条件 公式适用范围 公式 关键问题 和差问题 和倍问题 差倍问题 几个数的和与差 几个数的和与倍数 几个数的差与倍数 已知两个数的和,差,倍数关系 ①(和-差)÷2=较小数 较小数+差=较大数 和-较小数=较大数 和÷(倍数+1)=小数 小数×倍数=大数 ②(和+差)÷2=较大数 和-小数=大数 较大数-差=较小数 和-较大数=较小数 差÷(倍数-1)=小数 小数×倍数=大数 小数+差=大数 求出同一条件下的 和与差 和与倍数 差与倍数 年龄问题的三个基本特征 ①两个人的年龄差是不变的; ②两个人的年龄是同时增加或者同时减少的; ③两个人的年龄的倍数是发生变化的; 归一问题的基本特点 问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。 关键问题:根据题目中的条件确定并求出单一量; 植树问题 基本类型 在直线或者不封闭的 在直线或者不封闭的曲 在直线或者不封闭的曲线封 闭 曲 线 上 曲线上植树,两端都不 线上植树,两端都植树 上植树,只有一端植树 植树 植树 棵数=段某某+1 基本公式 棵距×段某某=总长 棵数=段某某-1 棵距×段某某=总长 棵数=段某某 棵距×段某某=总长 关键问题 确定所属类型,从而确定棵数与段某某的关系 鸡兔同笼问题 基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来; 基本思路: ①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样): ②假设后,发生了和题目条件不同的差,找出这个差是多少; ③每个事物造成的差是固定的,从而找出出现这个差的原因; ④再根据这两个差作适当的调整,消去出现的差。 基本公式: ①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数) ②把所有兔子假设成某某:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。 盈亏问题 基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果, 由于 分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量. 基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分 配的总份数,然后根据题意求出对象的总量. 基本题型: ①一次有余数,另一次不足; 基本公式:总份数=(余数+不足数)÷两次每份数的差 ②当两次都有余数; 基本公式:总份数=(较XX数一较小余数)÷两次每份数的差 ③当两次都不足; 基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差 基本特点:对象总量和总的组数是不变的。 关键问题:确定对象总量和总的组数。 牛吃草问题 基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成 这种差异的原因,即可确定草的生长速度和总草量。 基本特点:原草量和新草生长速度是不变的; 关键问题:确定两个不变的量。 基本公式: 生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间); 总草量=较长时间×长时间牛头数-较长时间×生长量; 周期循环与数表规律 周期现象:事物在运动变化的过程中,某些特征有规律循环出现。 周期:我们把连续两次出现所经过的时间叫周期。 关键问题:确定循环周期。 闰 年:一年有366天; ①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除; 平 年:一年有365天。 ①年份不能被4整除;②如果年份能被100整除,但不能被400整除; 平均数 基本公式:①平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数 ②平均数=基准数+每一个数与基准数差的和÷总份数 基本算法: ①求出总数量以及总份数,利用基本公式①进行计算. ②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基 准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后 求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式② 抽屉原理 抽屉原则一:如果把(n+1)个物体放在 n 个抽屉里,那么必有一个抽屉中至少放有2个物体。 例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况: ①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1 观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有 2个或多于2个物体,也就 是说必有一个抽屉中至少放有2个物体。 抽屉原则二:如果把 n 个物体放在 m 个抽屉里,其中 n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当 n 不能被 m 整除时。 ②k=n/m 个物体:当 n 能被 m 整除时。 理解知识点:[X]表示不超过 X 的最大整数。 例[4.351]=4;[0.321]=0;[2.9999]=2; 关键问题:构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。 定义新运算 基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。 基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过 程、规律进行运算。 关键问题:正确理解定义的运算符号的意义。 注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。 ②每个新定义的运算符号只能在本题中使用。 数列求和 等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。 基本概念:首项:等差数列的第一个数,一般用 a1表示; 项数:等差数列的所有数的个数,一般用 n 表示; 公差:数列中任意相邻两个数的差,一般用 d 表示; 通项:表示数列中每一个数的公式,一般用 an 表示; 数列的和:这一数列全部数字的和,一般用 Sn 表示. 基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出 第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。 基本公式:通项公式:an = a1+(n-1)d; 通项=首项+(项数一1) ×公差; 数列和公式:sn,= (a1+ an)×n÷2; 数列和=(首项+末项)×项数÷2; 项数公式:n= (an+ a1)÷d+1; 项数=(末项-首项)÷公差+1; 公差公式:d =(an-a1))÷(n-1); 公差=(末项-首项)÷(项数-1); 关键问题:确定已知量和未知量,确定使用的公式; 二进制及其应用 加法乘法原理和几何计数 加法原理:如果完成一件任务有 n 类方法,在第一类方法中有 m1种不同方法,在第二类方法中有 m2种不 同方法……,在第 n 类方法中有 mn 种不同方法,那么完成这件任务共有:m1+ m2....... +mn 种不 同的方法。 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 二元一次不定方程,按照二元一次不定方程解即可; 涉及知识点:列方程、数的整除、大小比较; 解不定方程的步骤:1、列方程;2、消元;3、写出表达式;4、确定范围;5、确定特征;6、确定答案; 技巧总结:A、写出表达式的技巧:用特征不明显的未知数表示特征明显的未知数,同时考虑用范围小的未 知数表示范围大的未知数;B、消元技巧:消掉范围大的未知数; 循环小数 一、把循环小数的小数部分化成分数的规则 ①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数 与循环节的位数相同,最后能约分的再约分。 ②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的 数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数 与不循环部分的位数相同。 二、分数转化成循环小数的判断方法: ①一个最简分数,如果分母中既含有质因数2和5,又含有2和5以外的质因数,那么这个分数化成的小数 必定是混循环小数。 ②一个最简分数,如果分母中只含有2和5以外的质因数,那么这个分数化成的小数必定是纯循环小数。 [文章尾部最后500字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《小学数学奥数知识总结手册》的无排版文字预览,完整内容请下载
小学数学奥数知识总结手册由用户“xin129400”分享发布,转载请注明出处