以下为《七年级上数学期末知识点整理》的无排版文字预览,完整内容请下载
七年级上数学期末知识点整理
有理数
一、有理数
/
数轴
规定了唯一的原点,正方向和单位长度 (三要素)的直线叫做数轴
三、相反数
相反数:只有符号不同的两个数互为相反数,0的相反数是0。在数轴上位于原点两侧且离原点距离相等。
四、绝对值
1.绝对值的几何意义:一个数所对应的点离原点的距离叫做该数的绝对值。
2.绝对值的代数定义:(1)一个正数的绝对值是它本身;(2)一个负数数的绝对值是它的相反数;(3)0的绝对值是0;(4)|a|大于或者等于0。
3.比较两个数的大小关系
数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从大到小的顺序,即左边的数小于右边的数。由此可知:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小。
五、有理数加减法
1.同号两数相加,取相同的符号,并把绝对值相加。
绝对值不相等的异号两数相加, 取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
2.互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.减去一个数,等于加上这个数的相反数。
六、乘除法法则
1.两数相乘,同号得 正 ,异号得 负 ,并把绝对值 相乘 。 0乘以任何数,都得 0 。
2.几个不为0的数相乘,积的符号由负因数的个数确定,负因数的个数为 偶数 时,积为正;负因数的个数为 奇数 时,积为负。
3.两数相除,同号得 正 ,异号得 负 ,并把绝对值 相除 。0除以任何一个不等于0的数,都得 0 。
4.有理数中仍然有:乘积是1的两个数互为 倒数 。
5.除以一个不等于0的数等于乘以这个数的 倒数 。
七、乘方
乘方定义:求n个相同因数的积的运算,叫做乘方。
中,底数是a,指数是n,幂是乘方的结果;读作:的n次方 或 的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。
八、运算律及混合运算
1.加法交换律:a+b=b+a
1.加法交换律:a+b=b+a
2.乘法交换律:a·b=b·a
3.加法结合律:a+(b+c)=(a+b)+c
4.乘法结合律:a·(b·c)=(a·b)·c
5.乘法分配律:a·(b+c)=ab+ac
6.有理数混合运算顺序:先乘方;再乘除;最后算加减。
7.有括号,先算括号内的运算,按小括号、中括号、大括号依次进行 。
8.同级运算, 从左到右进行 。
九、近似数
1.近似数:在一定程度上反映被考察量的大小,能说明实际问题的意义,与准确数非常地接近,像这样的数我们称它为近似数。
2.近似数的分类
(1)具体近似数(如30.2、58.0 …)
(2)带单位近似数(如2.4万…)
(3)科学记数法
3.精确度:用位数较少的近似数替代位数较多或位数无限的数,有一个近似程度的问题,这个近似程度就是精确度。四舍五入到哪一位,就说精确到哪一位(看精确度得到原数中去看在哪一位上,如:2.4万精确到千位,而非十分位,因为2.4万就是24000,4在千位上)。
4.有效数字:对于一个不为0的近似数,从左边第一个不为0的数字起,到末尾数止,所有数字都是这个近似数的有效数字。
求近似数要求保留n个有效数字时,第n+1个有效数字作四舍五入处理。
例:0.0109有三个有效数字1、0、9,要求保留2个有效数字时,0.0109的第三个有效数字9四舍五入,变为0.0110,保留两个有效数字1、1后求出近似数0.0109≈0.011
整式的加减
一、代数式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
2、 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 :
(1) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。
(2) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。
(3) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。
5、平行线的性质
(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。
(2) 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。
(3) 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《七年级上数学期末知识点整理》的无排版文字预览,完整内容请下载
七年级上数学期末知识点整理由用户“WW456789”分享发布,转载请注明出处