加载《D7_8常系数非齐次线性微分方程》成功,点击此处阅读
首页 →文档下载

D7_8常系数非齐次线性微分方程

以下为《D7_8常系数非齐次线性微分方程》的无排版文字预览,完整内容请下载

常系数非齐次线性微分方程 第八节一、二、

第七章 二阶常系数线性非齐次微分方程 :根据解的结构定理 , 其通解为求特解的方法根据 f (x) 的特殊形式 ,的待定形式,代入原方程比较两端表达式以确定待定系数 .①— 待定系数法一、 ? 为实数 ,设特解为代入原方程 , 得 为 m 次多项式 .(1) 若 ? 不是特征方程的根, 则取从而得到特解形式为Q (x) 为 m 次待定系数多项式(2) 若? 是特征方程的单某某 , 为m 次多项式,故特解形式为(3) 若 ? 是特征方程的重根 , 是 m 次多项式,故特解形式为小结对方程①,即即当? 是特征方程的 k 重根 时, 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 p>(2)当是特征方程的单某某时,二、例4. 的一个特解 .解: 本题 特征方程故设特解为不是特征方程的根,代入方程得比较系数 , 得于是求得一个特解特征根为例5. 的通解. 解: 特征方程为其根为对应齐次方程的通解为比较系数, 得因此特解为代入方程:所求通解为是特征方程的单某某 ,因此设非齐次方程特解为本题内容小结其中,k按? 不是特征方程的根、是单某某或是重根分设特解为不是特征方程的根、或是单某某分别 设特解为别取0、1、2。其中,k按取0、1。作业P354 1 (1) , (4) , (5) , (6)(8) ;

习题课2 第九节 [文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。

  1. 浸没边界与LBM
  2. 性教育情况调查-默认报告
  3. XX省XXXX区学校学年第二学期七年级综合知识竞赛数学试卷
  4. 零点讲课课件
  5. 一元一次方程教学设计
  6. 家长对早教机构的需求调查_***7
  7. 学年度第一学期高二理科数学期末考试试题
  8. - 学年七年级上学期期末数学模拟试题
  9. XX大学-微积分期末考试试题
  10. 湘教版数学七年级下册知识点归纳
  11. 整式的乘法教学设计
  12. 3.2解一元一次方程(二)练习题及答案
  13. 《圆的标准方程》教学设计
  14. 《实际问题与方程-例5》ppt课件(房)
  15. 加减消元法解二元一次方程组课件
  16. 2.4 一元二次方程根与系数的关系 教案
  17. 一元二次方程根与系数关系教学反思
  18. 21.2.4一元二次方程根与系数的关系教学设计

以上为《D7_8常系数非齐次线性微分方程》的无排版文字预览,完整内容请下载

D7_8常系数非齐次线性微分方程由用户“lzr5210”分享发布,转载请注明出处
XXXXX猜你喜欢
回顶部 | 首页 | 电脑版 | 举报反馈 更新时间2021-05-20 02:55:20
if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/6e/99/61794.html'}ipt>if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/6e/99/61794.html'}ipt>