加载《3.1.1 函数的概念 -人教A版高中数学必修第一册汇报课教案》成功,点击此处阅读
首页 →文档下载

3.1.1 函数的概念 -人教A版高中数学必修第一册汇报课教案

以下为《3.1.1 函数的概念 -人教A版高中数学必修第一册汇报课教案》的无排版文字预览,完整内容请下载

3.1.1 函数的概念

/

函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.

/

课程目标

1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

数学学科素养

1.数学抽象:通过教材中四个实例总结函数定义;

2.逻辑推理:相等函数的判断;

3.数学运算:求函数定义域和求函数值;

4.数据分析:运用分离常数法和换元法求值域;

5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。

/

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

/

教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

/

情景导入

初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?

要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.

预习课本,引入新课

阅读课本60-65页,思考并完成以下问题

1. 在集合的观点下函数是如何定义?函数有哪三要素?

2. 如何用区间表示数集?3. 相等函数是指什么样的函数?

要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

新知探究

1.函数的概念

(1)函数的定义:

设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.

(2)函数的定义域与值域:

函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合

??

??

|??∈??

叫做函数的值域.显然,值域是集合B的子集.

2.区间概念(a,b为实数,且a<b)

/

3.其它区间的表示

/

四、典例分析、举一反三

题型一 函数的定义

例1 下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是(  )

/

【答案】D

解题技巧:(判断是否为函数)

1.(图形判断)y是x的函数,则函数图象与垂直于x轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.

2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系.

跟踪训练一

1.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是(  )

/

【答案】C

题型二 相等函数

例2 试判断以下各组函数是否表示同一函数:

(1)f(x)=(

x

)2,g(x)=

x

2

; (2)y=x0与y=1(x≠0);(3)y=2x+1(x∈Z)与y=2x-1(x∈Z).

【答案】见解析

【解析】:(1)因为函数f(x)=(

x

)2的定义域为{x|x≥0},而g(x)=

x

2

的定义域为{x|x∈R},它们的定义域不同,所以它们不表示同一函数.

(2)因为y=x0要求x≠0,且当x≠0时,y=x0=1,故y=x0与y=1(x≠0)的定义域和对应关系都相同,所以

它们表示同一函数.

(3)y=2x+1(x∈Z)与y=2x-1(x∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数.

解题技巧:(判断函数相等的方法)

定义域优先 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 2)y=

1?

x

2

1+

x

2

.

【答案】(1) [1,+∞) (2) (-1,1]

【解析】(1)因为≥0,所以+1≥1,即所求函数的值域为[1,+∞).

(2)因为y==-1+,又函数的定义域为R,所以x2+1≥1,所以0<≤2,则y∈(-1,1].

所以所求函数的值域为(-1,1].

五、课堂小结

让学生总结本节课所学主要知识及解题技巧

六、板书设计

七、作业

课本67页练习、72页1-5

/

本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。

  1. 课题22.1.1二次函数——概念
  2. 反比例概念教学设计
  3. 函数的奇偶性课件
  4. 函数的表示法(1) 教学设计
  5. 函数的表示法(1) 教学反思
  6. 函数的表示法(1) 教学反思
  7. 数学:1.3.2《函数的奇偶性》课件(新人教A版必修1)
  8. 数学:1.3.2《函数的奇偶性》课件(新人教A版必修1)
  9. 函数的概念教学设计
  10. 《函数的概念》的教学设计
  11. 1.2.2函数的表示法教案(讲)
  12. 1.3.2函数的奇偶性教学设计
  13. 1.3.2《函数奇偶性》教学设计
  14. 1.3.2《函数奇偶性》教学设计
  15. 对数函数及其性质课件
  16. 《对数函数的图像和性质》教案
  17. 1.3.2函数的奇偶性教学设计
  18. 对数函数及其性质课件
  19. 函数的单调性教学设计
  20. 函数的概念教学设计

以上为《3.1.1 函数的概念 -人教A版高中数学必修第一册汇报课教案》的无排版文字预览,完整内容请下载

3.1.1 函数的概念 -人教A版高中数学必修第一册汇报课教案由用户“shouyouwj”分享发布,转载请注明出处
XXXXX猜你喜欢
回顶部 | 首页 | 电脑版 | 举报反馈 更新时间2021-02-10 12:50:41
if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/65/eb/28513.html'}ipt>if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/65/eb/28513.html'}ipt>