以下为《圆的面积计算教学设计》的无排版文字预览,完整内容请下载
《圆的面积计算》教学设计
教学内容:人教版六年级数学上册第五单元“圆”,教材P67- P68页内容
教材分析:
本课时是在学生掌握了常规规则图形的面积计算的基础上教学的,主要是利用长方形的面积公式对圆的面积计算公式进行推导,正确计算圆的面积。教学圆的面积时,首先要让学生回顾面积的概念,接着教材启发式的方法帮助学生寻找解决问题的思路和方法,回忆以前在研究多边行的面积时,主要采用了割补、拼组等方法,将不规则图形的面积转化成常见的规则的图形来解决,那么,在这里也可以用转化方法,让学生尝试运用以前曾多次采用过的“转化”的数学思想,把圆的面积转化为熟悉的长方形的面积来计算,。教学时,还要让学生认识到图形的转化是一种很重要的数学思想方法。
教学目标:
1、让学生通过自己动手操作、仔细观察,让学生体验圆面积计算公式的推导过程,真正理解掌握圆面积公式,并能正确计算圆的面积。
2、利用已有知识类推、迁移,使学生感受数学知识间的区别与联系。培养学生的观察、分析、概括的能力,发展学生的空间观念。
3、培养学生的合作精神和创新意识,提高动手操作和数学交流的能力,体验数学探究的乐趣。
教学重点:运用圆的面积计算公式解决实际问题。
教学难点:理解把圆面积转化为长方形推导出计算公式的过程。
教学准备:多媒体课件及圆的分解教具,学生准备圆纸片和圆形物品。
教学过程:
创设问题情境,激发学生学习兴趣 。
出示以下图形:
1、请同学们指出这些平面图形的周长和面积,并说说它们的区别。
2、你会计算它们的面积吗?想一想,我们是怎样推导出它们面积的计算公式的? (课件演示)
二、合作交流,探究新知。
1、认识圆的面积。
出示圆:
(1)让学生说出圆周长的概念,并指出来。
(2)想一想:圆的面积指什么?让学生动手摸一摸。
(揭示:圆所占平面的大小叫做圆的面积。)
(3)对比圆的周长和面积,让学生感受他们的区别。
同时引出课题——圆的面积。
2、推导圆面积的计算公式。
(1)学生观察书本P67主题图,思考:这个圆形草坪的占地面积是多少平方米?也就是要求什么?怎样计算一个圆的面积呢?
(2)刚才我们已经回顾了利用平移、割、补等方法推导平行四边形、三角形和梯形的面积计算公式的方法,那能不能把圆也转化成学过的图形来计算?猜一猜,圆可以转化成什么图形来推导面积公式呢?你打算用什么方式进行转化?
(3)请各小组先商量一下,你们想拼成什么图形,打算怎么剪拼,然后动手操作。
①分小组动手操作,把圆平均分成若干(偶数)等份,剪开后,拼成其他图形,看谁拼得又快又好?
②展示交流并介绍:小组代表给大家介绍一下你们组拼出来的图形近似于什么?是用什么方法剪拼的?为什么只能说是“近似”?能不能把拼出的图形的边变直一点?
③当圆转化成近似长方形时,你们发现它们之间有什么联系?
课件演示:
师:现在,老师把圆平均分成16份,可以拼出这个近似长方形的图。想象一下,如果平均分成64份、126份……又会是什么情形?
④小结:如果分的份数越多,每一份就会越小,拼成的图形就会越接近于长方形。
(4)以拼成的近似长方形为例,认真观看课件,师生共同推导圆的面积计算公式。
①引导:当圆转化成近似的长方形后,圆的面积与长方形面积有什么关系?并且指出拼出来的长方形的长和宽。
②长方形的长和宽与圆的周长、半径有什么关系?如果圆的半径是r,这个近似长方形的长和宽各是多少?如何根据已经学过的长方形的面积公式,推导出所要研究的圆的面积公式?
③学生讨论交流:长方形的长是圆周长的一半,即a=C/2=2πr/2=πr,宽是圆的半径 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 :有一个圆形花坛,中间建了一个圆形的喷水池,其他地方是草坪,求草坪的面积是多少? (如下图阴影部分)
提问:要求这个圆环的面积首先要知道什么条件才能求呢?(大、小圆的半径)显
示:小圆的半径是3米,大圆的半径是5米。
五、课后作业。
1、学生拿出自己带来的圆形物品,拿尺子动手测量,然后计算出它的面积。
(介绍你测量的方法,为什么可以这样测量?计算圆面积的依据是什么?)
2、完成书本P71练习十五第1题。
半径
直径
面积
4cm
9dm
6m
20m
六、板书设计:
圆的面积
圆所占平面的大小叫做圆的面积。
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《圆的面积计算教学设计》的无排版文字预览,完整内容请下载
圆的面积计算教学设计由用户“lanjieer”分享发布,转载请注明出处