以下为《《新编动力气象学》习题答案》的无排版文字预览,完整内容请下载
《新编动力气象学》习题答案 李 国 平 编嗪 XX信息*** 大气***嗪 二 O O 八年十二月 目录 习题一 流体力学基础 习题二 流体运动方程组 习题三 大气运动坐标系与方程组 习题四 自由大气中的平衡运动 习题五 尺度分析与方程组的简化 习题六 量纲分析与 Π 定理 习题七 环流定理与涡度方程 习题八 准地转动力学基础 习题九 大气边界层 习题十 大气能量学 习题十一 大气波动 习题十二 地转适应过程 习题十三 波动的不稳定理论 习题十四 热带大气动力学基础 1 习题一 流体力学基础 r r r r r 1 嗪 a = ( yz + xz2t2 )i + (xz + y2 z2t) j = 1604i + 3202 j 2 (1) 三维 嗪(2)不是 r rr r (3)a = 27i + 9 j+64k 3 流线:ìíîxzy==11 迹线:ìíî zx + = y 1 = -2 4 (1) r V=- x k r i+ y k r j + z k r k ,是 嗪(2) 不是 (3)不是 5嗪 x = c1e2t + c2e-t , y = c1e2t + c3e-t , z = c1e2t - (c2 + c3 )e-t 其中c1 = 1 3 (a + b + c), c2 = 2 3 a - 1 3 (b + c), c3 = 2 3 b - 1 3 (a + c) 6嗪 x = x1eat - 2 a3 - 1 a (t 2 + 2t a ), y = y1ebt + 2 b3 + 1 b (t 2 + 2t a ), 其中x1 = x0 + 2 a3 , x0 = x t=0 ; y = y0 + 2 b3 , y0 = y t =0 7 2 (1) (x0 , y0 , z0 ) 嗪 (2)(1,1,0);( rr r 1 ,e,1) er r r (3)V=xi - y j, a=xi + y j 8嗪 (1) ¶T = -5.18 ° C / 天 ¶t (2) ¶T = -2.68 °C / 天 ¶t 9嗪 (1) Eulerian ur (2) ¶V =(0,3,0) ¶rt r (3)(V ×Ñ)V=(34+2vz,4uy+4vx,0) ur (4) dV =(34+2vz,4uy+4vx+3,0) dt 10 嗪 (1) u = -2x, v = 2 y , w = 2zt 1+t 1+t (2) 不是 (3)ìíîzx=y1=1 ìx = e-2t (4)ïí y = (1+ t)2 ïîz = e2t (1+ t)-2 11 嗪 3 (1) 不存在势函数,存在流函数y= 1 y2 - y + tx 2 ì ïx ï =-t2 6 + 3 t- 4 23 (2)流线:ìíîzx=2-0 2y+2tx =0(4)迹线:íï ï y = t2 2 - 1 2 即:íìî zy = = -3x 0 ïz = 0 ï î 12 uur (1) Ñ ´Vh = 0 嗪 (2) j=-2axy+C (3)y2 - x2 = 3 13 嗪 v = -2axy 14 u = -2x( y +1) + f ( y) 15 嗪 (1) 是 (2)是 16 (1)y = b (x2 - y2 ) - 2axy 嗪 r2 r (2) a = (4a2 + b)i 17 嗪 (1) j = c ln(x2 + y2 ),y = ctg -1 y + c 2 x (2) j = -ctg -1 y + c,y = - c ln(x2 + y2 ) x 2 18 嗪 4 rrr (1) a=k2xi+k2y j (2) x=c1y,z=c2 (3) y = 2x, z = 1 (4) Ñ ur ´V = 0, Ñ ur ×V = r 2k, A = æ ç ççè k 0 0 0 k 0 0ö 00 ÷÷÷ø 19 嗪 r rrr (1) V=-2kxi+k y j + kzk ,定常 (2) ar=4k2xir+k2y r j + k 2 z r k (3) 存在j=kx2 - ky2 2 - kz2 2 + C,不存在y 20 嗪y = kxy + C 21 嗪 æ ç -2xy (1) ur Ñ ´V = (y2 r ur + x2)k,Ñ ×V ç = 0, A = ç ç 1 2 ( y 2 - x2) 1 (y2 - x2) 2 2 xy 0 ö ÷ ÷ 0 ÷ ÷ ç ççè 0 0 0 ÷ ÷÷ø (2) C = p a4 8 (3) 不存在j,存在y= 1 x2 y2 + C 2 22 (1) y = v0 sin ax + C 嗪 au0 (2) z = av0 sin ax, D = 0; x = p 2a 时, z max = av0 5 习题二 流体运动方程组 1嗪 2 嗪 u = z U - h2 ¶p z (1- z ) 嗪 h 2m ¶x h h 3嗪 4嗪 (1) u = 1 ¶p (z2 - hz) 2m ¶x (2) u = - U1 h z + U1 (3) u = 1 2m ¶p ¶x (z2 - hz) - U1 h z + U1 5嗪 设x轴沿斜坡向上为正,k=Dp + r g sina L (1) u = k (z2 - hz) 2m (2) Q = - k h3 12m (3) u = - k h2 12m 6嗪 6 (1) u = k (z2 - hz) + U z 2m h (2) Q = hU - k h3 2 12m (3) u = U - k h2 2 12m 其中k= Dp + r g sina L 7嗪 设 ¶p = 0 ¶x (1) u = U z d (2)y = - U z2 + C 2d 8 9嗪 (1) u = r g sina (z2 - hz) + U z 2m h (2) Q = - hU + r g sin a h3;U = r g sina h2 2 12m 6m (3) u = r g sina h2 z + r g sina (z2 - hz) = r g sin a (z2 - 2hz ) 6m 2m 2m 3 10 嗪 11 嗪 VB = [2rm gh r (1 - s 2 B 1 / s 2 A ) ]2 12 嗪 z = w2a4 2g ( 1 a2 - 1 r2 ),为旋转抛物面。 13 嗪 7 (1) z = w2 2g r2 + h0 = w2 2g (x2 + y2) + h0 , 为旋转抛物面。 (2)Dh = hmax - hmin = a2 2g w2 8 习题三 大气运动方程组 1 ur dV = ur ¶V + Ñ(V 2 ) + ur ur (Ñ ´V ) ´V dt ¶t 2 2 ur r (1) V a = (u + WR)i 嗪 (2) ur daV a = -(u2 ur + 2Wu + W2R)R0 dt R 3 g=g0 (1-2z/a) 4 (1) A = 310.2´10-4 (m × s-2 ) ur ur r (2) a = 0.628´10-4 (m × s-2 ) 5 2W ´V = -0.4375k(m × s-2 ) r (3) - 29.2 ´10-4 k(N × kg -1) 6 (1) z = 35828(km) (2) T = 86165(s) = 23h56m5s 7 - 1 uur N ur ´V r 8嗪 (1) Ñ2fa = 0 嗪 (2) Ñ2fe = -2W2 (3)嗪 Ñ2f = -2W2 9嗪 9 ur ur (1) Ñ ×V a = Ñ ×V ur ur ur (2) Ñ ´V a = Ñ ´V + 2W 10 嗪 d ( rv ) = 0 dt rd 11 嗪 (1) w0 = 0.2(m × s-1) , 爬坡 (2) ¶p = 0.0501(N × m-2 × s-1) = 5.5(hPa / 3hr) ¶t (3) w = -0.731´10-2 (m × s-1),下坡 12 嗪 ¶p = -68.69(hPa / hr) = -2.1(hPa / 3hr) ¶t 13 w = 1 d Q = -1.02´10-2 (m × s-1) g dt 14 嗪 da A = dA 嗪 dt dt 15 嗪 a max = tan-1[ W2a GM (GM - W2a3) 2(W2a3 - GM ) ] 16 嗪1.46cm 17 嗪 7.8m,向东位移 18 嗪 0.018kg, 增加 19 嗪 -126.3m, 落在发射点的西边 20 嗪 556m 21 嗪 ¶T = -2.1oC × hr-1,降温 ¶t 22 嗪( ¶ ¶t +u ¶ ¶x +v ¶ ) ¶y ¶f ¶p +s sw + a rCp e = 0 10 23 ss = ¶ 2f ¶p2 - 1 p ¶f ¶p R ( Cp -1) = 1 p2 ¶ ( ¶ ln p - R ) ¶f Cp ¶ ln p 24 嗪 25 嗪 (1) ss = ¶2q ¶p2 - 1 p ¶F ¶p R ( Cp -1) (2) ss = 1 p2 ¶ ( ¶ ln p - R ) ¶F Cp ¶ ln p (3) ss = a 2N 2 g (4) ss = Ca2 p2 = N2H 2 p2 26 嗪 (¶ ¶t ur +V ×Ñ) p + w ¶ ¶p = (¶ ¶t ur +V × Ñ)s + s& ¶ ¶s 11 习题四 自由大气中的平衡运动 1 嗪 tga = 1.0523´10-4 2 嗪 ug = 13m × s-1 3嗪 ìïug ï = ( f + 1 ugtgj )ra ¶p ¶j ï a í ïïvg ïî = ( f + 1 ugtgj )ra cosj a ¶p ¶l 4嗪 ìïïug = - 1 f ¶y ¶y í ïïîvg = 1 f ¶y ¶x 5 嗪 ug = 20.9m × s-1 6嗪z= z0 + T gr z0 ¶p ( ¶n )z0 / ¶p ( ¶n )z0 7 嗪 ¶VG = 0 嗪 ¶z 8 嗪Vg = 801.9m × s-1, VG = 43.5m × s-1 9 嗪 (VG Vg )max = 2 10 嗪 (1) VG = Vg (2) VG = Vi = const. 11 嗪Vg = 25.1, a = 34o17' 12 12 嗪 -4.24 ´10-4o C × s-1或 -1.5o C × day-1 13 嗪 -4.09 ´10-5o C × s-1或 - 3.5o C × day-1 14 嗪 (1) VG2 + VG = 1 VC2 Vg (2) V2 G = Vi (VG -Vg ) 15 嗪 z = ì ïï z0 í ï ïî z0 + + w( f +w) r2 2g w2R2 2g (2 - R2 r2 r ) < + R f wR2 g (1 2 + ln r) R r³R 16 嗪 (1)p=p0 exp[-ω2T2/(2RT)]嗪 (2) 941.3hPa 17 嗪 -852km 18 嗪 8.213´10-5o C × s-1或7.1oC × day-1 19 (1)13.7m × s-1 (2)11m × s-1, -11m × s-1 20 (1) 31m × s-1 (2) 59m × s-1 21 嗪a = 28 '32 '' 22 嗪 13 (1) u2 - u1 = - gDz fTbm ( T (2) bm - T (1) bm Dy ) (2) ¶u = - g ¶T ¶z fT ¶y 14 习题五 尺度分析与方程组的简化 1 嗪 -130km,不能 2 嗪 Z = 103 m 3嗪 ì ¶u ï ï ¶t +u ¶u ¶x +v ¶u ¶y = - 1 r ¶p ¶x (1) ï ¶v í ï ¶t + u ¶v ¶x + v ¶v ¶y = - 1 r ¶p ¶y ï ï-(u î ¶w ¶x + v ¶w ) ¶y - 1 r ¶p ¶z - g = 0 (2)不再成立 4 嗪 H = 8261m 5 嗪 H = RT0 g 6 嗪 ¶r = 0 ¶z z=H 7嗪 (1) u = u02 + v02 sin( ft + tan -1 u0 v0 ), v = (2) Ti = 2p f u02 + v02 cos( ft + tan -1 u0 v0 ) 8嗪 15 (1) u = u0 cos ft + v0 sin ft, v = v0 cos ft - u0 sin ft (2) V = u2 + v2 (3) (x - a)2 + ( y - b)2 = u02 + v02 f (4) r = u02 + v02 = 68568(m) f (5) 9 嗪 0.0286o < j < 0.286o 10 z = H ln( gH ) C pT0 11 嗪 z = T0 ,g = g 时,¶p = 0且 ¶2 p < 0 g R ¶t ¶t 2 12 嗪 39.9m × s-1 13 嗪 H = 7987(m) 14 嗪 ¶T = -0.034(oC × m-1) ¶z 15 嗪 z = T0 [1- ( p0 )-Rg / g ] g p 16 嗪 z = Hq [1 - ( p0 p )-R/Cp ] 16 17 嗪 O(w) = O(¶p w) ¶z 18 嗪 O(Dp ) = o(w) P0 = 10-6 (s-1) 19 Dp≈D,ζp≈ζ嗪 20 嗪 (1) tga = d d x z = 1 T ( ¶T ¶x ¶2z ) p ( ¶x2 ) p (2) ¶ ¶z ( ¶z ¶x ) p = 1 T ( ¶T ¶x )p 21 嗪Ñpz - Ñq z = 1 gd -g Ñ pT 22 嗪 w » T 1 dq q g d - g dt 23 嗪 O[( ¶z ¶x ) p ] = Dp p gL = 10-4 24 嗪 1 r Ñ z p = Ñ qy 25 嗪 (1) uur Vh = (z 1 + f ) r k ´ Ñh (Vh2 2 +f) (2) uur Vh = 1 z r k ´ Ñh (Vh2 2 +f) 26 嗪 17 ¶u - ( f + z )v = - ¶p ¶t ¶x ¶v + ( f + z )u = - ¶p ¶t ¶y 18 习题六 量纲分析与XXXXX定理 1 嗪 Dp = C mQ d2 g ¶q 2 嗪 Ri C = q ¶z ( ¶V )2 = CN 2 (¶V )2 ¶z ¶z 3 嗪 Dp = mU D f (Re ) (Re = rUD ) 嗪 m 4 嗪 选r,U,d独立,F=rU 2d 2 f ( rUd m , U2 gd , U Nd ) = rU 2d 2 f (Re , Fr ,e ) 5 选r,m,Q独立,F=rQg( U 6 , m 2 ) Qg3 r 2 gQ 6 嗪U = r1a2 g f ( r2 ) m r1 7 (1)F=C1maU 嗪(2)CD = p a2 F ×1 rU 2 = C2 Re 2 8 嗪 U=C a2 m g(r0 - r) 9 嗪不会 10嗪 选r,w,D独立,FD=rW 2 D 2j ( m r wD ) 19 习题七 环流定理与涡度方程形 1 ò (1) C = N (1- e-kt ),其中k为摩擦系数,N=- adp 嗪 k L (2) Cmax = N k 2 嗪 -7.16 m2 × s-2 3嗪 (1) C = -4.6´106 m2 × s-1 (2) - 7.3m × s-1 4 嗪 -5.5 m × s-1 5嗪 (1) C = -2´107 m2 × s-1 (2) z = -2 ´10-5 s-1 6嗪 (1) C = 2pV rn+1 r0n (2) z = (n +1)V0 r n+1 r0n (3) p = p0 + r V02 2n r [( r0 )2n -1] 7 20 (1)V = C 嗪 r (2) V = z 0r + C 2r 8 (1) z = 3Vh r (2) z = Vh 嗪 r (3) z = - Vh r (4) z = Vh 2r å 9 嗪z = 2 3r 3 vq i i 10 z = 1.83´10-5 s-1 11 嗪z = 0 12 嗪 (1) z = Nz 0 + (N -1) f0 (2) V = 2 r0 N [Nz 0 + (N -1) f0 ] 13 嗪 ¶z p = -5.24 ´10-10 s-2 ¶t 14 嗪 d (z + dt f ) = -(z + f )Ñh ur ×V 15 嗪 z a = z a0e-Dt 16 嗪 z = -0.34 ´10-5 s-1 21 17 嗪j = 60o N 18 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 动方向。 5 嗪 (1)750m2 × s-2 (2)136km 6 (1) cx = N n = Ca NH >0 (2) fu' = - 1 ¶p' ( f = b y) r ¶y 7 cx = gH 8 (1) c1,2 = w1,2 k = ±c0 1 + b (2n + c02k 1) (n = 0,1, 2,L) 表示向东、向西快速传播的惯性-重力(外)波。 (2) c1,2 = c0 ( 1 2 ± 1 4 + b k 2c0 ) 表示 mixed Rossby-gravity wave(称为混合 Rossby-重力波或 Rossby-重力混 44 合波)。 (3) c3 = w3 k = k2 + b b (2n +1) (n = 0,1, 2,L) c0 表示向西缓慢传播的 Rossby 波(即东风波)。 (4) c = gH 表示向东传播的开尔文(Kelvin)波。 9 同题 7 10 同题 8 11 (1) (2) 热带罗斯贝波 45 开尔文波 46 [文章尾部最后500字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《《新编动力气象学》习题答案》的无排版文字预览,完整内容请下载
《新编动力气象学》习题答案由用户“a743319451”分享发布,转载请注明出处