以下为《西师版四年级上册数学教学设计-探索规律》的无排版文字预览,完整内容请下载
探索规律
教学目标:
1.能借助计算器探索出乘法算式的一些简单规律。
2.通过观察、比较、猜测、验证、推理、交流等数学活动,让学生经历探索规律的过程,培养初步的逻辑思维能力和推理能力。
教具学具准备:
视频展示台。
教学过程:
一、激趣引入
教师在黑板上板书下列算式:1×1= 11×11= 111×111= 1111×1111=
教师:你发现了什么?
学生:每个算式里的两个因数相等,每个因数的每个数位上都是数字1。
教师:从上往下看,比较这些算式,你还能发现什么?
学生:第1个算式两个因数都是一位数,第2个算式两个因数都是两位数,第3个算式两个因数都是三位数,第4个算式两个因数都是四位数。
教师:我们发现的都是这些算式的规律,既然这些算式有这么多的规律,那么它们的结果会不会也呈现出一些规律呢?学生自由猜测。
教师:今天我们就来探索规律。板书课题。
[点评:用有规律的一组算式让学生发现规律,并用猜测算式的积是否有规律的方式巧妙地引入本节课学习,能激发学生探索规律的兴趣。]
二、探索规律
1.教学例1。
教师:刚才大家的猜测对不对呢?我们先用计算器算出这些算式的结果。
学生用计算器计算,并把结果写下来。
学生汇报结果,教师板书:1×1=1 11×11=121 111×111=12321 1111×1111=***
教师:刚才我们的猜测正确吗?
学生:确实有规律。
教师:你能发现什么规律?
学生小组合作讨论、交流,教师巡视指导后再组织汇报。
学生1:我发现当算式中两个因数相等,而且每个数位上的数字都是1时,两个一位数相乘,积是一位数;两个两位数相乘,积是三位数,两个三位数相乘,积是五位数;两个四位数相乘,积是七位数。也就是积的位数总比两个因数位数的和少一位。
教师:你是怎样发现这个规律的?
引导学生说出:是用每个算式的积和它们的因数相比得到的规律。
教师:观察、比较是我们在寻找规律中用得比较多的方法,还有没有不一样的发现?
学生2:我发现它们的积很有趣,你看1×1=1,每个因数里有1个1,积就是1;11×11=121每个因数里有2个1,积从左到右就从1开始排到2,然后又排回1;111×111=12321每个因数里有3个1,积就从1排到3再排回到1……
教师:也就是说如果因数中有几个1,积就从1开始从左到右排到几,然后又排回到1。如果每个因数里有4个1,积就从1排到4,即1234,再接着排回来321,组成积***。
学生3:我还发现从第二个算式1111×11111的积。
学生:11111×11111=***1。
教师:你是怎样想的?学生只要能用自己的语言表述清楚就可以了。
教师:我们用这个规律推测11111×11111的积是否正确,还是用计算器来验证一下。
学生验证后发现确实正确,证明学生发现的规律是科学的。
[点评:这个环节中学生对规律的探索经历了“根据已知条件、运用适当的方法发现规律——运用规律进行推测——验证规律的科学性”这样一个过程,这里关注的不仅是学生发现了什么规律,更重要的是学生对规律的使用,以及验证规律的科学性,这样可以培养学生严谨的科学探索精神。]
2.教学例2。
教师:刚才我们探索了乘法算式的规律,下面再来看看这几组除法算式。
出示例2中的算式:2424÷101= 2424÷202= 2424÷404=
4 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 体订正。
[点评:对除法计算中规律的探索,教学中放手让学生以小组为单位通过讨论、猜测、验证、推理、交流等学习活动进行规律的探索,这样不但有利于培养学生的学习能力和探究能力,还让学生从中获得成功体验,培养了学生良好的学习情感。]
三、巩固练习
独立完成课堂活动,再组织交流。
四、拓展运用
教师:刚才我们发现这么多乘、除法里的规律,像这些有规律的算式你能写出来吗?
学生尝试写,并在全班进行交流。
[点评:这里让学生写几个有规律的算式既使学生对规律的探索由“发现规律”扩展到“创造规律”上来,提高了学生对规律探索的层次,又培养了学生的思维能力,使学生的创新思维得到发展。]
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《西师版四年级上册数学教学设计-探索规律》的无排版文字预览,完整内容请下载
西师版四年级上册数学教学设计-探索规律由用户“shuiyunren”分享发布,转载请注明出处