¼ÓÔØ¡¶ÊýѧʵÑé.µÚ¶þ°æ.Mathematica¼ò½é¡·³É¹¦£¬µã»÷´Ë´¦ÔĶÁ
Ê×Ò³ ¡úÎĵµÏÂÔØ

ÊýѧʵÑé.µÚ¶þ°æ.Mathematica¼ò½é

ÒÔÏÂΪ¡¶ÊýѧʵÑé.µÚ¶þ°æ.Mathematica¼ò½é¡·µÄÎÞÅÅ°æÎÄ×ÖÔ¤ÀÀ£¬ÍêÕûÄÚÈÝÇëÏÂÔØ

Mathematica ¼ò½é

?ÊýÖµ¼ÆËãÓë·ûºÅ¼ÆËã

ÔÚPascalºÍCµÈ¸ß¼¶ÓïÑÔÖУ¬±í´ïʽÓɳ£Êý¡¢±äÁ¿ºÍº¯Êý×é³É£¬±í´ïʽµÄ¼Æ Ëã½á¹ûÊÇÒ»¸öÊýÖµ»òÒ»¸ö×Ö·û,ÊýÖµ¼ÆËãÊǸ߼¶ÓïÑÔµÄÖ÷ҪĿ±ê;·ûºÅ¼ÆËãÊÇÏà ¶ÔÊýÖµ¼ÆËã¶øµÃÆäÃû£¬ÔÚ·ûºÅ¼ÆËãÖУ¬±í´ïʽµÄ¼ÆËã½á¹ûÈÔÊÇÒ»¸ö±í´ïʽ,ÀýÈ磬 ¶àÏîʽÒòʽ·Ö½âµÄ¼ÆËã½á¹ûÈÔÊǶàÏîʽÒò×ӵij˻ý£¬²»¶¨»ý·ÖµÄ¼ÆËã½á¹ûÊDZ» »ýº¯ÊýµÄÔ­º¯Êý.

?·ûºÅ¼ÆËãϵͳ

·ûºÅ¼ÆËãϵͳÊÇÒ»¸öÊýѧÈí¼þϵͳ£¬ËüÖ÷Òª°üÀ¨:ÊýÖµ¼ÆËã¡¢·ûºÅ¼ÆË㡢ͼÐÎ ¹¦ÄܺͳÌÐòÉè¼ÆËĸö·½Ã湦ÄÜ.Ëüº¬Óй¦ÄÜÇ¿´óÖÖÀà·á¸»µÄÄÚ²¿º¯Êý£¬Óû§Ò²¿É ÒÔ×Ô¶¨Ò庯Êý²¢À©³äµ½ÏµÍ³º¯ÊýÖÐ.

·ûºÅ¼ÆËãÒÑÓм¸Ê®¸öÈí¼þϵͳ£¬Ò»°ãÓÐרÓÃϵͳºÍͨÓÃϵͳÁ½À࣬¶¼ÓÐÊÊºÏ ÓÚ´Ó¹¤×÷Õ¾µ½Î¢»úʹÓõĶàÖÖ°æ±¾.Ä¿Ç°£¬Í¨Ó÷ûºÅ¼ÆËãϵͳ°´×Öĸ˳ÐòÅÅÁÐ ÓÐ:Axiom Macsyma Maple Mathematica Reduce ºÍ Dirive µÈ.

·ûºÅ¼ÆËãϵͳͨ³£¶¼ÓÐÁ½ÖÖÔËÐз½Ê½:Ò»ÖÖÊǽ»»¥Ê½£¬Ã¿·¢Ò»¸öÃüÁî,¾ÍÖ´ÐÐ Ò»ÖÖÏàÓ¦µÄÊýѧ¼ÆË㣬ÀýÈ磬ÔÚMathematicaÖУ¬¼ÆË㶨»ý·Öj j;2(ll —sin z)dzµÄ º¯ÊýÃüÁîÊÇ£ºIntegrate[2T2(ll - sinx) , {x, - 1,1}],ÁíÒ»ÖÖ·½Ê½ÊÇдһ¶Î ³ÌÐò£¬ÏµÍ³Á¬ÐøÖ´ÐÐһϵÁеÄÃüÁ¾ÍÏñÓÃFortran»òCд³ÌÐòÒ»Ñù.ÿ¸ö·û ºÅ¼ÆËãϵͳ¶¼ÓÐ×Ô¼ºµÄ³ÌÐòÉè¼ÆÓïÑÔ£¬ÕâЩÓïÑÔÓëͨÓõĸ߼¶ÓïÑÔ´óͬС Òì.

MathematicaÊÇÓÅÐãµÄ·ûºÅ¼ÆËãϵͳ֮һ.ÔÚ±¾ÕÂÖмòÒªÁгöMathematica ϵͳµÄÖ÷Òªº¯Êý£¬¹©Ê¹Óòο¼.Òª½øÒ»²½ÕÆÎÕºÍÁ˽âMathematicaµÄ¹¦ÄÜ£¬Çë²é ÔÄϵͳµÄÔÚÏß°ïÖúºÍ²Î¿¼ÓйصÄÊé¼®.

?¹ØÓÚ Mathematica

MathematicaÊÇÃÀ¹úWolfram***¿ª·¢µÄ·ûºÅ¼ÆËãϵͳ.1988Äê·¢²¼ MathematicaϵͳµÄ1. 0°æ£¬Òòϵͳ¾«ÖµĽṹºÍÇ¿´óµÄ¼ÆËãÄÜÁ¦¶ø¹ãΪÁ÷´«£¬ ¾­²»¶ÏÀ©³äºÍÐ޸ĺó£¬ÔÚ1991ÄêºÍ1997ÄêÍƳöÁ˹¦Äܸü¼Ó³äʵºÍÍêÉÆµÄ Mathematica 2. 0 °æºÍ Mathematica 3. 0 °æ£¬ÔÚ 1999 ÄêÍƳöÁË Mathematica 4. 0 °æ. Stephen WolframÊÇMathematicaµÄ´´Ê¼ÈË£¬²¢¹«ÈÏÊǵ±½ñ¿Æѧ¼ÆËãµÄÏÈ Çý.Wolfram 1959ÄêÉúÓÚÂ׶Ø.Ëû¾Í¶Á¹ýEton£¨ÒÁ¶Ù¹«Ñ§£©,oxford£¨Å£½ò´óѧ£©ºÍ Caltech£¨¼ÓÖÝ***£©?ÓÚ1979Äê20ËêʱÔÚ¼ÓÖÝ***»ñÀíÂÛÎïÀíѧ²©Ê¿ ѧλ.

WolframµÄÑо¿·¶Î§°üÀ¨ÁËÎïÀíѧ¡¢ÊýѧºÍ¼ÆËã»úµÄÐí¶àÁìÓò.1981ÄêÖ÷³Ö ¿ª·¢Á˵ÚÒ»¸ö¼ÆËã»ú´úÊýϵͳSMP.ËûÔçÆڵŤ×÷Ö÷ÒªÔÚÄÜÎïÀí¡¢Á¿×Ó³¡ÂÛºÍÓî Öæѧ·½Ãæ.ÓÉÓÚËûÔÚÎïÀíºÍ¼ÆËã·½ÃæµÄ³É¼¨,1981Äê³ÉΪ×îÄêÇáµÄÂó¿Ë°¢£¨Mac- Arthur£© ½±Ñ§½ð»ñ½±Õß.1986Ä꣬Ëû´´°ìÁËÔÓÖ¾Comliex Systems.µ£ÈιýÒÁÀïŵ ´óѧ¸´ÔÓϵͳÑо¿ÖÐÐĵÄÖ÷ÈΣ¬ÎïÀíѧ¡¢ÊýѧºÍ¼ÆËã»ú¿Æѧ½ÌÊÚ.

´ÓWolfram Research¹«Ë¾´´°ì¿ªÊ¼,Stephen Wolfram¾Í***µÄ×ܲò¢ ÖÂÁ¦ÓÚMathematicaµÄ·¢Õ¹£¬Wolfram¸ºÔðMathematicaµÄ×ÜÌåÉè¼Æ£¬ËûдÁË Mathematica´ó²¿·ÖµÄ»ù±¾ºËÐÄ´úÂë.

DanielR. GraysonÒÁÀïŵ´óѧµÄÊýѧ½ÌÊÚ.ËûÓÚ1976ÄêÔÚÂéÊ¡Àí¹¤»ñµÃ Êýѧ²©Ê¿Ñ§Î»£¬ËûдÁË MathematicaµÄÊýѧ²¿·ÖµÄÐí¶àÄÚÈÝ£¬°üÀ¨ÈÎÒ⾫¶ÈµÄËã ÊõÔËËã¡¢½â·½³Ì¡¢¾ØÕóÑÝËã¡¢Ý뼶ÊýºÍÍÖÔ²º¯Êý.

Roman E. Maeder ¸ºÔðMathematicaµÄ·ûºÅ»ý·Ö¡¢¶àÏîʽÒòʽ·Ö½âºÍÆäËû ¶àÏîʽÔËËã.Ëû¸ø¼ÆËãÊýѧÑо¿Éú¿ªÉèÁË“ÊýѧʵÑéÊÒ”¿Î³Ì.

Stephen M. Omobundro дÁË Mathematica µÄÈýάͼÐγÌÐò´úÂë.Omobundro ÓÚ1985ÄêÔÚ²®¿ËÁ¦¼ÓÖÝ´óѧ»ñÊýѧÎïÀíѧ²©Ê¿Ñ§Î».1985ÖÁ1986ÄêËûÔøÔÚ Think Machines¹«Ë¾´ÓÊ´ó¹æÄ£²¢ÐмÆËãµÄËã·¨·½ÃæµÄ¹¤×÷.ËûÊÇConnection Machine¼ÆËã»úµÄLISPÓïÑÔÉè¼ÆÕßÖ®Ò».

MathematicaÊÇ×î´óµÄµ¥Ó¦ÓóÌÐòÖ®Ò»£¬ËüÄÚÈݷḻ¹¦ÄÜÇ¿´óµÄº¯Êý¸²¸Ç Á˳õµÈÊýѧ¡¢Î¢»ý·ÖºÍÏßÐÔ´úÊýµÈÖÚ¶àµÄÊýѧÁìÓò,Ëü°üº¬ÁËÊýѧ¶à·½ÏòµÄз½ ·¨ºÍм¼Êõ;Ëü°üº¬µÄ½ü°Ù¸ö×÷ͼº¯ÊýÊÇÊý¾Ý¿ÉÊÓ»¯µÄ×îºÃ¹¤¾ß;ËüµÄ±à¼­¹¦ÄÜ Í걸µÄ¹¤×÷ƽ̨NotebooksÒѳÉΪÐí¶à±¨¸æºÍÂÛÎĵÄͨÓñê×¼£»ÔÚ¸øÓû§×î´ó ×ÔÓÉÏ޶ȵļ¯³É»·¾³ºÍÓÅÁ¼µÄϵͳ¿ª·ÅÐÔÇ°ÌáÏ£¬ÎüÒýÁ˸÷ÁìÓòºÍ¸÷Ðи÷ÒµµÄ Óû§.

ÏÖÔÚMathematicaÔÚÊÀ½çÉÏÓµÓг¬¹ýÒ»°ÙÍòµÄÓû§£¬ÒÑÔÚ¹¤³ÌÁìÓò¡¢¼ÆËã»ú ¿Æѧ¡¢ÉúÎïҽѧ¡¢½ðÈں;­¼Ã¡¢Êýѧ¡¢ÎïÀí¡¢»¯Ñ§ºÍÉç»á¿ÆѧµÈ·¶Î§µÃµ½Ó¦ÓÃ.ÓÈÆä ÔÚ¿ÆÑÐÔºËùºÍ¸ßµÈԺУÁ÷ÐÐ.ËüÒ²ÊÇ“ÊýѧģÐÍ”ºÍ“ÊýѧʵÑ锿γÌ×îºÃµÄ¹¤¾ß Ö®Ò».ÊÀ½ç¸÷µØµÄ´óѧºÍ¸ßµÈ½ÌÓý¹¤×÷ÕßÒÑ¿ª·¢»ùÓÚMathematicaµÄ¶àÃſγÌ.

? ½øÈë Mathematica

Mathematica 2. 2 °æ

ÔÚ“¿ªÊ¼”²Ëµ¥µÄ“³ÌÐò”Öе¥»÷“Mathematica 2. 2”.ÆÁÄ»ÏÔʾһ¸öËæ»úµÄÆô

¹¤×÷ÆÁÄ»ÉÏÓÐÖ÷²Ëµ¥ºÍһЩ¸ö¹¤¾ß°´Å¥£¬²Ëµ¥ÒâÒåÎÄÈçÆäÃû.ÀýÈç:File±í ʾÎļþ,Edit±íʾ±à¼­,Cell±íʾ¶ÔCell£¨µ¥Ôª£©µÄ´¦Àí´ó²¿·Ö¹¤¾ß°´Å¥Ò²ÊÇ “ͼ”ÈçÎÄÒ壬ÀýÈ磬Óüôµ¶±íʾ¼ôÇÐ.ÏÂÁм¸¸ö³£Óð´Å¥ µÄ¹¤¾ß°´Å¥£º

´´½¨¡¢´ò¿ª¡¢±£´æ¡¢´òÓ¡Notebooks°´Å¥

¼ôÇС¢¸´ÖÆ¡¢Õ³Ìù¡¢È¡Ïû°´Å¥

¼ÆËã±í´ïʽ¡¢¶¯»­¡¢Í¼ÐεÄPostscript.²¥·ÅÉùÒô

3άͼÐÎÊӵ㡢ÑÕÉ«Ñ¡Ôñ¡¢°ïÖú°´Å¥

Mathematica 4. 0 °æ

ÔÚ“¿ªÊ¼”²Ëµ¥Öе¥»÷

Ä»£¨Í¼17-2£©,ºÍµÍ°æ±¾Ïà±È£¬¸ß°æ±¾ÒԲ˵¥ÃüÁîΪÖ÷£¬¼õÉÙÁË°´Å¥ÃüÁÓû§¿É ×Ô¶¨Òå°´Å¥ÃüÁî.

IEvaluation->Evaluate Cells ÃüÁî.

µ¥»÷ÔËÐа´Å¥H(3.0ÒÔϵİ汾).

ÀýÈ磺Æô¶¯ Mathematica ºó£¬ÊäÈë Plot [xSin[l/x] , (x, Ò» 0. 5,0. 5}]£¬°´ Shift +»Ø³µ¼ü£¬ÆÁÄ»ÏÔʾͼ17 - 3.

/

ͼ17-3Ö´ÐÐÒ»ÌõÃüÁîºóµÄ´°¿Ú

ΪÁ˽ôËõ°æÃ棬ÔÚÀýÌâÖн«Í¬ÐÐÏÔʾ= ”ºÍÊäÈëµÄÄÚÈÝ£¬Çë²»Òª½« aln[x]:= ”ÎóÒÔΪÊÇÓû§ÊäÈëµÄ×Ö·û.ÔÚ³ÌÐòÖУ¬ÓÃ×¢ÊÍÓï¾ä£¨*˵Ã÷* £©¸ø³ö ³ÌÐòµÄ¼òҪ˵Ã÷.

ÊäÈ뺯Êý»òÃüÁîµÄ¿ì½Ý·½Ê½

¼üÈ뺯Êý»òÃüÁîµÄµÚÒ»¸ö»òÇ°¼¸¸ö×Ö·û£¬°´¿ì½Ý¼üCtrl + k£»»òµ¥»÷²Ëµ¥ Input->Complete SelectionÃüÁî.ÕâʱÆÁÄ»ÉÏÏÔʾÒÔ¼üÈë×Ö·ûΪÊ׵ĺ¯ÊýºÍÃü ÁîÁÐ±í£¬ÔÚÁбíÉϵ¥»÷ij¸öº¯Êý»òÃüÁϵͳÔò½«ÕâÌõº¯Êý»òÃüÁîÕ³Ìùµ½ÄãµÄÊä ÈëÖÐ.µ¥»÷º¯ÊýºÍÃüÁîÁбí¿òÓұߵÄÉÏϼýÍ·£¬¿Éµ÷³ö¸ü¶àµÄº¯ÊýºÍÃüÁî.Óû§ ×Ô¶¨ÒåµÄº¯ÊýÒ²×Ô¶¯·ÅÔÚÁбíÖÐ.

?Í˳ö Mathematica

ÒªÍ˳öMathematica,µ¥»÷´°¿ÚÓÒÉϽǵĹرմ°¿Ú°´Å¥E3,»òÔÚ“Îļþ”²Ë µ¥ÖÐÑ¡Ôñ“Exit”ÃüÁ»ò°´“AM + F4”.Èç¹û´°¿ÚÖл¹ÓÐÄÚÈÝûÓб£´æµ½Note- bookÖУ¬Õâʱ»á³öÏÖÒ»¸ö¶Ô»°¿ò£¬ÏµÍ³ÒªÎÊÄãÊÇ·ñ±£´æ£¬µ¥»÷¶Ô»°¿òÉϵē·ñ £¨N£©”°´Å¥Ôò¹Ø±Õ´°¿Ú£¬µ¥»÷“ÊÇ£¨Y£©”°´Å¥£¬Ôò±£´æNotebookºóÔÙÍ˳ö´°¿Ú .Í˳ö ºó·µ»Øµ½µ÷ÈëMathematicaÒÔÇ°µÄ״̬.

?ÔÚMathematicaÖлñÈ¡°ïÖú

µ¥»÷Help²Ëµ¥ÖеÄMathematica Book…ÃüÁîÏîijijShift + Flµ÷³ö°ïÖú ²Ëµ¥£¬²Ëµ¥ÉÏÁù¸öÑ¡ÏµÄÃû³Æ¶¼ÊÇHelp²Ëµ¥µÄ³ÉÔ±.Help²Ëµ¥µÄ»ù±¾°ïÖúЊϢΪÁù¸öÑ¡Ï¹²Ïí.ÀïÃæÓÐÒ»±¾ÍêÕûµÄMathematicaʹÓÃÖ¸ÄÏ,¼üÈëÄÚÈݵÄÐò ºÅ»òµ¥»÷²Ëµ¥ÃüÁ¿É»ñµÃÏà¹ØµÄ°ïÖúÐÅÏ¢.ÏÂÁи÷Ñ¡ÏµÄ°ïÖúÄ¿±ê.

Ñ¡ÏÃû³Æ

˵ Ã÷



Built - in Function

ÄÚ½¨º¯Êý°´ÊýÖµ¼ÆËã¡¢´úÊý¼ÆË㡢ͼÐκͱà³Ì·ÖÀà´æ·Å



Add - ons

ÓгÌÐò°ü(Standard Packages) ,MathLink Library µÈÄÚÈÝ



The Mathematica Book

Ò»±¾ÍêÕûµÄMathematicaµÄʹÓÃÊÖ²á



Getting

³õѧÕßÊ×Ñ¡´¦£¬ÓгõѧÕßÈëÃÅÖ¸XX¶àÖÖÑÝʾ



Started/Demos





Other Information

²Ëµ¥ÃüÁîµÄ¿ì½Ý¼ü£¬¶þάÊäÈë¸ñʽµÈ



Master Index

°´×Öĸ˳Ðò¸ø³öÃüÁî¡¢º¯ÊýºÍÑ¡ÏîµÄË÷Òý±í





³ýÁ˵¥»÷Help£¨°ïÖú£©²Ëµ¥»ñÈ¡°ïÖúÍ⣬ÔÚÐÐÎÄÖÐÊäÈë“£¿º¯ÊýÃû”£¬¿ÉµÃµ½ Óйغ¯ÊýµÄµ÷ÓÃÐÎʽºÍÏà¹Ø˵Ã÷£¬ÊäÈë“£¿£¿º¯ÊýÃû”£¬ÔòµÃµ½¸ü¶àµÄÐÅÏ¢.

ÀýÈ磺£¿ Integrate £¨ *µ¥»÷ÔËÐа´Å¥£¬ÏµÍ³ÏÔʾÈçÏÂ* £©

Integrate[f ,x] gives the indefinite integral of f with respect to x Integrate[f,{x,xmin,xmax}] gives the definite integral

Integrate^, {x,xmin,xmax}, {y,ymin,ymax} J gives a multiple integral

ÀýÈ磺£¿ Plot * ( *ÏÔʾËùÓÐÒÔPl¡£Æß¿ªÍ·µÄº¯ÊýºÍÑ¡ÏîÃû³Æ* )

—¡¢MathematicaÖеĻù±¾Á¿

?ÊýÓëÊýµÄ±íʾ

ÊýÖµÀàÐÍ

MathematicaµÄ¼òµ¥ÊýÖµÀàÐÍÓÐÕûÊý¡¢ÓÐÀíÊý¡¢ÊµÊýºÍ¸´Êý.ÕûÊý(Integer) ÓÉÈô¸É¸ö0µ½9µÄÊý×Ö×é³É,Êý×ÖÖ®¼ä²»ÄÜÓпոñ¡¢¶ººÅºÍÆäËû×Ö·û£¬Õý¸ººÅ·Å ÔÚÕûÊýµÄÊ×룬ÊäÈëʱ£¬ÕýºÅ¿ÉÊ¡ÂÔ²»Ð´£¬Ö»ÒªÄÚ´æÔÊÐí,Mathematica¿ÉÒÔ±íʾ ÈÎÒⳤ¶ÈµÄ¾«È·ÕûÊý£¬²»ÊÜËùÓõļÆËã»úµÄ×Ö³¤ËùÏÞÖÆ.ÔÚMathematicaÖÐÔÊÐí ʹÓ÷ÖÊý£¬Ò²¾ÍÊÇÓÃÓÐÀíÊý(Rational)±íʾһ¸ö»¯¼ò¹ýµÄ·ÖÊý.µ±Á½¸öÕûÊýÏà³ý ¶øÓÖ²»ÄÜÕû³ýʱ£¬ÏµÍ³¾ÍÓÃÓÐÀíÊýÀ´±íʾ.ÀýÈ磺¶á£¬ÏµÍ³×Ô¶¯¶Ô·ÖÊý×ö¿ÉÄÜµÄ »¯¼ò£¬×Ô¶¯Ô¼È¥·Ö×ӺͷÖĸµÄ¹«Òò×Ó.ÊäÈëʱ£¬ÎÒÃÇÓ÷Ö×Ó/·ÖĸµÄÐÎʽ,ÓóýºÅ ¸ô¿ª·Ö×ÓÓë·Öĸ;Êä³öʱ£¬ÏµÍ³Ò»°ãÓ÷ÖʽµÄÐÎʽ£¬µ±·Ö×ӺͷÖĸÊýÖµ½Ï´óʱ£¬ÓРʱijij·Ö×Ó/·ÖĸµÄÐÎʽ±íʾ.

ÀàÐÍ ÃèÊö

Àý ˵ Ã÷



ÕûÊý Integer

*** ÈÎÒⳤ¶ÈµÄ¾«È·ÕûÊý



ÓÐÀíÊý Rational

13243/*** »¯¼ò¹ýµÄ·ÖÊý



ʵÊý Real

***. 89123 ÈÎÒ⾫¶ÈµÄ½üËÆʵÊý



¸´Êý Complex

***.0+3. 2 I ʵ²¿ºÍÐ鲿¿ÉΪÕûÊý¡¢ÓÐÀíÊý¡¢ÊµÊý



Êýѧ³£Êý Êýѧ³£Êý Pi

E

Degree

I

Infinity

ÒâÒå

Ѩ=3. 14159

×ÔÈ»¶ÔÊýµÄµ×e = 2. 71828-

1 ¶È,tc/180

ÐéÊýµ¥Î»i=¡»

8,ÎÞÇî´ó



ÕâЩÊýѧ³£Êý¶¼ÊǾ«È·Êý£¬ÓÃÔÚ¹«Ê½ÍƵ¼ºÍ¼ÆËãÖУ¬ÔÚ¹«Ê½ÍƵ¼ÖÐÊýѧ³£Êý ¶àΪ¾«È·Êý;ÓÃÔÚÊýÖµ¼ÆËãÖеÄÊýѧ³£Êý¿ÉÒÔÈ¡ÈÎÒ⾫¶È?

ÊýµÄÊä³ö

N[±í´ïʽ] ÒÔʵÊýÐÎʽÊä³ö±í´ïʽ

N[±í´ïʽÒÔ¡¨Î»¾«¶ÈµÄʵÊýÐÎʽ±íʾ±í´ïʽ

?±äÁ¿

¸ø±äÁ¿È¡Ãû

ÔÚMathematicaÖÐÄÚ²¿º¯Êý»òÃüÁÊÇÒÔ´óд×Öĸ¿ªÍ·µÄ±êʶ·û£¬ÎªÁ豆 Ãâ»ìÏý£¬ÔÚMathematicaÖбäÁ¿Ãûͨ³£ÒÔСдӢÎÄ×Öĸ¿ªÍ·£¬ºó¸ú×Öĸ»òÊý×Ö£¬ ±äÁ¿Ãû×Ö·ûµÄ³¤¶È²»ÏÞ.ÀýÈç:abcdefghijk,A>X3¶¼ÊǺϷ¨µÄ±äÁ¿Ãû£»¶ø2ÆßºÍ uv£¨uÓëvÖ®¼äÓÐÒ»¿Õ¸ñ£©²»ÄÜ×÷Ϊ±äÁ¿Ãû.ÔÚ±äÁ¿ÃûÖÐÓ¢ÎÄ×Öĸ´óСдÒâÒå²» ͬ£¬Òò´ËAÓëa±íʾÁ½¸ö²»Í¬µÄ±äÁ¿.ÔÚMathematicaÖбäÁ¿¼´È¡¼´Ó㬲»ÐèÒª ÏÈ˵Ã÷±äÁ¿µÄÀàÐÍÔÙʹÓÃ.

¸ø±äÁ¿¸³Öµ

ÔÚMathematicaÖÐÓÃ"=”»ò“:=”Æð¸³Öµ×÷Óã¬Ò»°ãÐÎʽΪ:

±äÁ¿=±í´ïʽ »ò ±äÁ¿1 =±äÁ¿2 =±í´ïʽ

±äÁ¿Çå³ý±äÁ¿µÄÖµ

clear[±äÁ¿]Çå³ý±äÁ¿µÄ¶¨ÒåºÍÖµ

ÔÚMathematicaÖДӦÀí½âΪ¸ø±äÁ¿¶¨ÒåÒ»¸öÖµ.ÔÚMathematicaÖУ¬Ò» ¸ö±äÁ¿¿ÉÒÔ±íʾһ¸öÊýÖµ¡¢Ò»¸ö±í´ïʽ¡¢Ò»¸öÊý×é»òÒ»¸öͼÐÎ.

±äÁ¿Ìæ»»

±äÁ¿ÓÐÁ½ÖÖ»ñÈ¡ÊýÖµµÄ·½Ê½£¬¸³ÖµÊÇÒ»ÖÖ·½·¨£¬ÁíÒ»ÖÖÊǶԱäÁ¿×öÌæ»». expr/. Ihs - >rhs Óà rhs Ìæ»» expr ÖÐµÄ Ihs

expr/. £¨Ihsl - >rhsl,lhsl - >rhsl,…£ý·Ö±ðÓà rhsi Ìæ»» expr ÖÐµÄ Ihsi ¶¨ÒåÖеÄIhs¿ÉΪ±äÁ¿»òº¯ÊýÃûµÈ¶àÖÖ¶ÔÏó.

Àý

In[l] = f = x^2 + l?f/.x->l£¨* Óà 1 Ìæ»» ÖÐµÄ * £©

Out[l] = 2

In[2]£º =g = ar2 + y¡¢2£»g/. £ûx- >2ÁÆ- >1£ý£¨ * ÔÚ g ÖÐÌæ»» x,y Á½¸ö±äÁ¿ * £©

0ut[2] = 5

In[3] : = Cos[l - x] + Cos[x]/. Cos - >Sin£¨ * º¯Êý sin Ìæ»»º¯Êý cos * £© 0ut[3] = Sin[l~ x] + SinQx]

?±í

Ñ­»·ÃèÊö

±íÔÚÐÎʽÉÏÊÇÓû¨À¨ºÅÀ¨ÆðÀ´µÄÈô¸ÉÔªËØ£¬ÔªËØÖ®¼äÓöººÅ·Ö¸ô.ÔÚÔËËã ÖУ¬¿É¶Ô±í×÷ÕûÌå²Ù×÷£¬Ò²¿É¶Ôµ¥¸öÔªËزÙ×÷.±í¿ÉÒÔ±íʾÊýѧÖеļ¯ºÏ¡¢ÏòÁ¿ºÍ ¾ØÕó£¬Ò²¿É±íʾÊý¾Ý¿âÖеÄÒ»×é¼Ç¼?±íÖеÄÔªËØ¿ÉΪÈκÎÊý¾ÝÀàÐÍ?±íµÄÔªËØ ¿ÉΪÊýÖµ¡¢±í´ïʽºÍ±í.ͬһ¸ö±íÖеÄÔªËØ¿ÉΪ²»Í¬µÄÊý¾ÝÀàÐÍ.±íÖÐÔªËؽÏÉ٠ʱ,Ö±½ÓʹÓÃÐÎʽ:±äÁ¿={ÔªËØ1,ÔªËØ2,…}¼üÈë±íÖÐÔªËØ£¬¼´ÔÚ¸ø³ö±íÃûµÄͬ ʱÓÖ½¨Á¢Á˱íÖÐÔªËØ.¸ü¶àµÄʱºòÐèÒªÓý¨±íÃüÁî.ÔÚѧϰ½¨±íÃüÁîÇ°£¬ÏÈÁ˽â MathematicaÖеÄÑ­»·ÃèÊö.

Ñ­»·ÃèÊöÐÎʽ£º{Ñ­»·±äÁ¿£¬Ñ­»·³õÖµ£¬Ñ­»·ÖÕÖµ,²½³¤}

Ñ­»·±äÁ¿¡¢Ñ­»·³õÖµ¡¢Ñ­»·ÖÕÖµºÍ²½³¤¿ÉΪÕûÊý¡¢ÓÐÀíÊýºÍʵÊý.µ±²½³¤Îª1 ʱ¿ÉÊ¡ÂÔ£¬µ±Ñ­»·³õֵΪ1ʱ¿ÉÊ¡ÂÔ.ÀýÈ磺

{i,max}i ´Ó 1 µ½ max£» {max}Öظ´ max ´Î£»

, {j , jmin, jmax} i ´Ó imin µ½ imax,²¢¶Ô i µÄÿһ¸öÖµ j ´Ó jmin µ½ jmax

½¨±íº¯Êý

Table[ͨÏʽ£¬{Ñ­»··¶Î§}£¬{Ñ­»··¶Î§}]

°´Ñ­»··¶Î§¶¨Òå±í,ÓÃͨÏʽµÄ¹æÔò¶¨Òå±íµÄÔªËØ.

Range[³õÖµ£¬ÖÕÖµ£¬²½³¤]

Éú³ÉֵΪ(³õÖµ£¬³õÖµ+²½³¤£¬…£¬ÖÕÖµ}µÄÊýÖµ±í.

In[l]£º = Range[3,9,2] ¡¢

Out[l] = {3,5,7,9}

In[2]: = b = Table[i+j-l,(i,l,3),(j,l,3}]

0ut[2]£º = {{1,2,3},{2,3,4),(3,4,5})

±íµÄ·ÖÁ¿±íʾ

ÔÚÉÏÀýÖУ¬µ±b±íʾһ¸ö¶þά±íʱ±íʾbÖеĵÚ2¸ö×Ó±í£¬¼´µÚ¶þ ÐÐÔªËØ£¬Èç¹ûs= 0,3,5,7},s[[2]]±íʾ±íµÄµÚ2¸öÔªËØ3;ÏÂÁбíʾ±íµÄ·ÖÁ¿ µÄ²¿·ÖÐÎʽ.

±íµÄ·ÖÁ¿

Òâ Òå



»ò Part[t,n]

±ítÖеĵڔ¸ö×Ó±í



- n]]»ò Part[t, - n]

±ítµ¹ÊýµÚ¡¨¸öÔªËØ



First[list]

±ílistµÄµÚÒ»¸öÔªËØ



Lastflist]

±ílistµÄ×îºóÒ»¸öÔªËØ



t[[{nl,n2, —)]]»ò

¸ø³ö±ítµÄµÚnl,n2,n3…¸öÔªËØ×é³É



Part[t, (nl,n2,n3, —}]µÄ±í







±í*µÄµÚ£¬¸ö×Ó±íµÄµÚj¸öÔªËØ





¸ø³öÔÚ±ílistµÄµÚnλÖòåÈëexprºóµÄ½á¹û ¸ø³öÔÚ±ílistµÄÊײ¿²åÈëÔªËØexprºóµÄ½á¹û ¸ø³öÔÚ±ílistµÄĩβ²åÈëÔªËØexprµÄ±í ÔÚ±ílistµÄĩβ²åÈëÔªËØexpr

È¡listÖеÄÇ°¡¨¸öÔªËØ

È¡list´Ómµ½nµÄÔªËØ£¨°üÀ¨mmÔÚÄÚ£© ¸ø³öɾµôµÚÒ»¸öÔªËØÖ®ºóµÄ¼¯ºÏ

¸ø³öɾµômµ½µ¶¸öÔªËØÖ®ºólistµÄ¼¯ºÏ

ÓÃexprÌæ»»listÖÐn´¦µÄÔªËØ ¸ø³ö±íHstÖÐÔªËصÄÊýÄ¿

½«±ílistµÄÔªËØ°´ÕÕ±ê׼˳ÐòÅÅÐò È¥µôÖظ´µÄÔªËغó¶ÔÔªËØÅÅÐò ½«±ílistÖÐÔªËصÄ˳Ðòµ¹¹ýÀ´ °ÑlistÖеÄËùÓÐÔªËØÏà¼Ó °ÑÖеÄËùÓÐÔªËØÏà³Ë

Àý ½«Êý×éaÖÐËùÓÐÔªËØÏà¼Ó.

=a= {5,8,5,7,2,6}£»

: = Apply^Plus,a]

0ut[2] = 33

In[3N=Sort[a] £¨ *½«±íbµÄÔªËØÓÉСÖÁ´ó˳ÐòÅÅÁÐ* £©

0ut[3] ={2,5,5,6,7,8£©

= Reverse[ % ] £¨ *·´×ªÉÏ±í£¬¼´±íÔªËØÓÉ´óÖÁСÅÅÁÐ* £©

0ut[4]= {8,7,6,5,5,2}

±íµÄ¼¯ºÏÔËËã

Union|21istl ,list2, ???]

¼ÆËãµÄºÍ¼¯£¬¸ø³ö±ílistl,list2,…ÖеIJ»Í¬ÔªËØ£º

Intersection^listl ,list2, ???]

¼ÆËãµÄ½»¼¯£¬¸ø³ö±ílistl,list2,…ÖеĹ«¹²ÔªËØ£»

Complement[un,listl ,list2, ???]

¼ÆËãun¶Ôlistl,list2, —µÄ²¹¼¯£¬¸ø\€ÔÚunÖе«²»ÔÚ±ílistl,list2,—

ÖÐÔªËصÄÒ»¸ö±í.

?³õµÈº¯Êý

ʵ±äÁ¿ÊýÖµº¯Êý



Òâ Òå



Round[x]

×î½Ó½üz

µÄÕûÊý



FloorQx]

²»´óÓÚÓÈ

µÄ×î´óÕûÊý



Ceiling]x]

²»Ð¡ÓÚX

µÄ×î´óÕûÊý



Abs[x]

ʵÊý¹¤µÄ¾ø¶ÔÖµ£¬¸´Êý“µÄÄ£



SignQx]

·ûºÅº¯Êýx>0ʱֵΪ1µã=¡£Ê±ÖµÎª¡£





xÇëµã»÷Ï·½Ñ¡ÔñÄúÐèÒªµÄÎĵµÏÂÔØ¡£

  1. Íи£ÌýÁ¦Ñ§¿Æ·ÖÀࣨÍêÈ«ÐÞÕý°æ£©
  2. ¿Î¼þMaking the news
  3. Moduel9 Unit1 Unit1 Reading ½ÌѧÉè¼Æ
  4. ¶à¶÷²¼Ê²ºê¹Û¾­¼Ãѧ¿ÎºóÏ°Ìâ´ð°¸1
  5. Î÷¹¤´ónoj´ð°¸ÍêÕû°æ
  6. Ó¢ÓïÆÚÄ©¿¼ÊÔÌâµç×Ó°æ
  7. 6Ô´óѧӢÓïËļ¶¿¼ÊÔÕæÌâ
  8. Êýѧ¼ÆËãÌâ´óÈ«
  9. 04ÐéÄ⻯¼¼Êõ-ʵ¼ù
  10. ȫаæ´óѧӢÓï(µÚ¶þ°æ)×ۺϽ̳Ì1¿ÎºóÏ°Ìâ´ð°¸
  11. Unit3Lifeinthefuture
  12. dunyadan-ilginc-haberler006
  13. 10ÔÂ8ÈÕ-10ÔÂ15ÈÕ³¤ÄѾä
  14. ann
  15. Full_Paper_Template
  16. Python and HDF5
  17. Ëļ¶´Ê»ãÕª³­
  18. Ó¢Óï124µ¥´Ê£¨£©1--30
  19. The clinicopathological signifcance
  20. ×îÐÂÂÛÎÄÄ£°æ£¨£©

ÒÔÉÏΪ¡¶ÊýѧʵÑé.µÚ¶þ°æ.Mathematica¼ò½é¡·µÄÎÞÅÅ°æÎÄ×ÖÔ¤ÀÀ£¬ÍêÕûÄÚÈÝÇëÏÂÔØ

ÊýѧʵÑé.µÚ¶þ°æ.Mathematica¼ò½éÓÉÓû§¡°tenglicqit¡±·ÖÏí·¢²¼£¬×ªÔØÇë×¢Ã÷³ö´¦
XXXXX²ÂÄãϲ»¶
»Ø¶¥²¿ | Ê×Ò³ | µçÄÔ°æ | ¾Ù±¨·´À¡ ¸üÐÂʱ¼ä2021-04-18 18:40:40
if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/e2/9e/53554.html'}ipt>if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/e2/9e/53554.html'}ipt>