以下为《函数内容简介》的无排版文字预览,完整内容请下载
函数
极限:数列的极限(特殊)—一函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势由极限可以推得的一些性质:局部有界性、局部保某某……应当注意到,由极限所得到的性质通常都是只在局部范围内成立在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系
连续:函数在某点的极限等于函数在该点的取值连续的本质:自变量无限接近,因变量无限接近导数的概念
本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率
微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了不定积分:导数的逆运算什么样的函数有不定积分
定积分:由具体例子引出,本质是先分割、再综合,其中分制的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确什么样的数有定积分
求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆定积分的几何应用和物里应用
高等数学里最重要的数学思想方法:微元法
微分和导数的应用:判断函数的单调性和凹凸性微分中值定理,可从几何意义去加深理解
泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:一、这些多项式的系数如何求?二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的
多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数
极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势
连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念
沿坐标轴方向的导数若存在,称之为偏导数
通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续,则求导次序可交换
微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则撒分存在仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在
若偏导数存在,且连续,则微分一定存在
极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 的平面情形
进一步考察无旋场的性质
旋度为零,相当于对旋度作的第二类曲面积分为零一一即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零—一即从该闭合曲线上任选一点出发,积分与路径无关一一相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数一一所得的势函数的梯度正好就是原来的力场一一因为力场函数是连续的,所以势函数有全微分简单的概括起来就是:无旋场一一积分与路径无关—一梯度场一一有势场一一全微分要注意以上这些说法之间的等价性
三定理(Gauss Stokes Green)的向量形式和分量形式要熟悉
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《函数内容简介》的无排版文字预览,完整内容请下载
函数内容简介由用户“tangkai112”分享发布,转载请注明出处