以下为《长方体和正方体的体积和表面积提升练习》的无排版文字预览,完整内容请下载
长方体和正方体的体积和表面积提升练习
立体图形之长方体与正方体
一、一个长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会存在3个、4个、5个面是正方形!
二、经过折叠可以组合成正方体:
三、经过折叠可以组合成长方体:
练习:
下列三个图形中,能拼成正方体的是( )
① ② ③
四、长方体或正方体的切割组合对棱长的影响
1.切割
将长方体横向切割成两个长方体后,棱长将比原来一个长方体时增加4条长和4条宽;(棱长增加的最长)
将长方体竖向切割成两个长方体后,棱长将比原来一个长方体时增加4条宽和4条高;(棱长增加的最短)
将正方体沿无论沿那个方向切割成两个长方体后,棱长将比原来增加4条棱。
2.组合
将两个完全相同的长方体沿上下面组合后,棱长比原来两个长方体时减少4条长和4条宽;(棱长减少的最多)
将两个完全相同的长方体沿前后面组合后,棱长比原来两个长方体时减少4条长和4条高;
将两个完全相同的长方体沿左右面组合后,棱长比原来两个长方体时减少4条宽和4条高;(棱长减少的最少)
将两个完全相同的正方体沿上下面组合后,棱长比原来两个正方体时减少8条棱;
依次类推将三个完全相同的正方体沿上下面组合后,棱长比原来三个正方体时减少16条棱,四个组合减少24条棱,五个组合减少32条……(公式:8×(N—1))
例如:将五个完全相同的正方体组合成一个长方体后,棱长和为140厘米,原来每个正方体的棱长和是多少
分析:五个正方体棱长共有12×5=60条;
将五个完全相同正方体组合后棱长比原来减少32条,还剩60-32=28条;
即这28条棱的长度和即为新长方体的棱长和,所以正方体一条棱的长度为:140÷28=5cm;
所以一个正方体的棱长和为:5×12=60cm。
五、小正方体拼大正方体的规律
由于正方体,每条棱的长度相等,所以要用小的正方体拼出大的正方体每条棱上摆放的小正方的个数应该是相等的,因此要拼出最小的正方体至少需要2×2×2=23=8个(也就是说每条棱上放2个小正方体),接着再往大了拼正方体,就是每条棱上放3个小正方体即3×3×3=33=27个,依次类推接下来是4×4×4=43=64个;5×5×5=53=125个……
从中我们可以发现要用小的正方体拼出大的正方体所需要的小正方体的个数应该是一个数的立方。这就要求我们能够熟记一些数的立方:
23=8 33=27 43=64 53=125 63=216
73=343 83=512 93=729 103=1000
小正方体拼大长方体的规律
规律同正方体,首先观察大长方体各棱长分别是小正方体棱长的几倍,如,长方体长是小正方体棱长的a倍,宽是小正方体棱长的b倍,高是小正方体棱长的c倍,则,大长方体就是由a×b×c个小正方体组成的。
练习:
(1)用棱长为3厘米的小正方体拼棱长为9厘米的大正方体需要( )个小正方体。
A、8个 B、27个 C、26个 D、64个
(2)一个长方体的长宽高分别是18、12、9,如果用棱长为3的小正方拼一个这样的长方体,一共需要( )块这样的小正方体。
(3)一个长方体的 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 一个苹果浸没在水中,这时量得容器内的水深分米。这个苹果的体积是多少立方分米(玻璃的厚度忽略不计)
3、一个底面积是80平方厘米的鱼缸,放入20条小鱼后,水面上升了2厘米,这些小鱼平均每条的体积是多少
4.石块全部浸入底面积是320平方厘米的长方体水箱中,水面上升厘米,这个石块的体积是多少立方厘米
5.一个长方体水箱上,从里面量长6分米 ,宽5分米。先倒入82升水,再浸入一个棱长是2分米的正方体铁块,这时水面离水箱口1分米,这个水箱的容积是多少立方分米
6.一个棱长为人5分米的正方体容器内放有一个不规则铁块,现在把40升水倒入正方体内(水不外溢),这时测得水深分米。这个铁块的体积是多少立方分米
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《长方体和正方体的体积和表面积提升练习》的无排版文字预览,完整内容请下载
长方体和正方体的体积和表面积提升练习由用户“wanghao2600”分享发布,转载请注明出处