以下为《5.2平面直角坐标系(1)教案》的无排版文字预览,完整内容请下载
课题:5.2平面直角坐标系(1)
上课教师:谭某某
教学目标:[来源:Z,xx,k.Com]
1.理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念.[来源:学.科.网]
2.认识并能画出平面直角坐标系.
3.能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置[来源:学.科.网][来源:***][来源:Zxxk.Com]
重点:根据点的坐标在直角坐标系中描出点的位置;
难点:探索特殊的点与坐标之间的关系;
课前准备:
板块
教师活动的问题串设计
学生活动串设计
目标达成及
反馈串设计
一、复习回顾
问题1:填空:①规定了 、 、 的直线叫做数轴。
②数轴上原点及原点右边的点表示的数是 ;原点左边的点表示的数是 。
③数轴上的点与 一一对应。
(即:一个实数可以用数轴上的点来表示,数轴上的点也唯一确定一个实数。)
问题2:有序实数对
在日常生活中,我们经常用一对数字来确定点的位置。如表示座位的(1,1)(5,4)等。
这(1,1)(5,4)就称为有序实数对。
问题3:能不能有一种办法来确定平面内的点的位置呢?
独立完成,同伴互纠
学生倾听
教师讲解
引入课题
二、认识平面直角坐标系和象限
问题1.平面直角坐标系:
(1)平面上画两条 且有公共 的两条数轴构成平面直角坐标系,简称直角坐标系。
(2)为了区分坐标轴,水平的数轴称为 或 ,习惯上取向 为正方向;竖直的数轴称为 或 ,取向 为正方向;它们统称为坐标轴。两个坐标轴的交点为平面直角坐标系的 。
(3)原点向右称为正半轴,原点向左称为负半轴
原点向上称为正半轴,原点向下称为负半轴
问题2.象限
两条坐标轴将平面分成的4个区域称为象限,按逆时针顺序分别记为第一象限,第二象限,第三象限和第四象限。
独立思考后,同伴说一说
独立填一填
教师巡视
三、由点确定相应的坐标,由坐标找到相应的点
问题1:我们用一对 表示平面上的点,在平面直角坐标系中,这对数叫 。表示方法为(a , b),a是点对应 上的数值,b是点在 上对应的数值。
问题2:如何在平面直角坐标系中表示一个点
例:如图,点A可表示为:
(1)方法:由点A分别向X轴和 作垂线。
点A在x轴上的坐标为 ,在y轴上的坐标为 ,
点A在平面直角坐标系中的坐标为(2,3),记作:A(2,3)
(2)强调:X轴上的坐标写在前面。
(3)活动:你能说出点B、C、D的坐标吗?
(4)思考归纳:原点O的坐标是( , ),
x轴上的点纵坐标都是 , y轴上的横坐标都是
问题3:由坐标找相应的点
例1.在直角坐标系中,描出下列各点的位置。
A(3,1) B(-2,4) C(-4,-2)
D(3,-2) E(0,1) F(-4,0)
O(0,0) G(1,3) H(4,-2)
归纳:有序数对(a,b)与平面上的点一一对应。
学生思考回答
学生倾 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 。
归纳:点P(a , b)到x轴的距离是 ;到y轴的距离是 ,到原点的距离是 。
练习:点A到到x轴的距离是2,到y轴的距离是3,则点A的坐标是
独立完成,同伴互纠
学生填写
独立完成,同伴互纠
教师适当提示点拨
师生归纳
讲解板书
六、课堂小结
1.平面直角坐标系,坐标轴,象限,坐标的概念
2.由点写出坐标,由坐标找点
3.各象限点的特征
4. 点P(a , b)到x轴、y轴、原点的距离
教学反思
能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《5.2平面直角坐标系(1)教案》的无排版文字预览,完整内容请下载
5.2平面直角坐标系(1)教案由用户“waxis1”分享发布,转载请注明出处