加载《LaTeX画神经网络图》成功,点击此处阅读
首页 →文档下载

LaTeX画神经网络图

以下为《LaTeX画神经网络图》的无排版文字预览,完整内容请下载

LaTeX

绘制网络结点图的tikz库

在控制论或者是智能领域,神经网络是经常接触到的,另外,研究网络时,也经常需要绘制网络结点图,下面介绍一个tikz库可以非常方便地绘制这类图。

The following example shows a Rearrangeable Clos Network:

////

Kalman Filter System Model

/

神经网络绘图包

包的整体设计非常不错,使用也很方便,作者使用该包写了一个版面不错的文档。

Linear regression may be visualised as a graph. The output is simply the weighted sum of?the inputs:

/

Logistic regression is a powerful tool but it can only form simple hypotheses, since it operates?on a linear combination of the input values (albeit applying a non-linear function as soon as?possible). Neural networks are constructed from layers of such non-linear mixing elements,?allowing development of more complex hypotheses. This is achieved by stacking4 logistic?regression networks to produce more complex behaviour. The inclusion of extra non-linear?mixing stages between the input and the output nodes can increase the complexity of the?network, allowing it to develop more advanced hypotheses. This is relatively simple:

/

The presence of multiple layers can be used to construct all the elementary logic gates. This?in turn allows construction of advanced digital processing logic in neural networks – and?this construction occurs automatically during the learning stage. Some examples are shown?below, which take inputs of 0/1 and which return a positive output for true and a non-positive?output for false:

/

From these, it becomes trivial to construct other gates. Negating the ?values produces?the inverted gates, and these can be used to constru 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 结构为例,把Caffe中example/mnist/lenet_train_test.prototxt文件的内容复制到编译框,按shift + enter,立即就可以得到可视化的结构图。?

/

Keras

Python/draw_net.py, 这个文件,就是用来绘制网络模型的。也就是将网络模型由prototxt变成一张图片。

绘制Lenet模型

# sudo python python/draw_net.py examples/mnist/lenet_train_test.prototxt netImage/lenet.png --rankdir=TB

/

(部分)

Keras

//

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]

以上为《LaTeX画神经网络图》的无排版文字预览,完整内容请下载

LaTeX画神经网络图由用户“zky_13”分享发布,转载请注明出处
XXXXX猜你喜欢
回顶部 | 首页 | 电脑版 | 举报反馈 更新时间2020-03-26 13:36:24
if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/81/a0/7597.html'}ipt>if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/81/a0/7597.html'}ipt>