以下为《《任意角》教学设计1》的无排版文字预览,完整内容请下载
《任意角》教学设计
教学要求:理解任意大小的角正角、负角和零角,掌握终边相同的角、象限角、区间角、终边在坐标轴上的角.
教学重点:理解概念,掌握终边相同角的表示法.
教学难点:理解角的任意大小.
教学过程:
一、复习准备:
1.提问:初中所学的角是如何定义?角的范围?
(角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;0°~360°)
2.讨论:实际生活中是否有些角度超出初中所学的范围? → 说明研究推广角概念的必要性
(钟表;体操,如转体720°;自行车车轮;螺丝扳手)
二、讲授新课:
1.教学角的概念:
① 定义正角、负角、零角:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转所形成的角叫零角.
② 讨论:推广后角的大小情况怎样? (包括任意大小的正角、负角和零角)
③ 示意几个旋转例子,写出角的度数.
④ 如何将角放 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。
① 出示例1:在0°~360°间,找出下列终边相同角:-150°、1040°、-940°.
(讨论计算方法:除以360求正余数 →试练→订正)
② 出示例2:写出与下列终边相同的角的集合,并写出-720°~360°间角.
120°、-270°、1020°
(讨论计算方法:直接写,分析k的取值 →试练→订正)
③ 讨论:上面如何求k的值? (解不等式法)
④ 练习:写出终边在x轴上的角的集合,y轴上呢?坐标轴上呢?第一象限呢?
⑤ 出示例3:写出终边直线在y=x上的角的集合S, 并把S中适合不等式
的元素写出来. (师生共练→小结)
3. 小结:角的推广;象限角的定义;终边相同角的表示;终边落在坐标轴时等;区间角表示.
三、巩固练习:
1. 写出终边在第一象限的角的集合?第二象限呢?第三象限呢?第四象限呢?直线y=-x呢?
2. 作业:书P6 练习 3 ③④、4、5题.
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《《任意角》教学设计1》的无排版文字预览,完整内容请下载
《任意角》教学设计1由用户“fly晟世不凡”分享发布,转载请注明出处