加载《高考数学试题分析暨届高三复习建议》成功,点击此处阅读
首页 →文档下载

高考数学试题分析暨届高三复习建议

以下为《高考数学试题分析暨届高三复习建议》的无排版文字预览,完整内容请下载

2002年高考数学试题分析暨2003届高三复习建议

**_* 谌某某

(欢迎访问谌某某主页:http://jksyf.126.com)

一、2002年高考数学试题评析

2002年普通高考继续深化考试内容的改革,依据“有利于高校选拔人才,有助于中学实施素质教育,有助于高校扩大办学自主权”的原则,进行了进一步的改革探索。力图通过数学科的高考,不仅能够考查出考生数学知识的积累是否达到进入高校学习的水平,而且要以数学知识为载体,测量出考生将知识应用于不同环境的能力,从而检测出考生的已有和潜在的学习能力。

(一)试题特点

1.“稳中有变”,突出考查支撑学科知识体系的知识主干内容。

2002年的普通高考数学试题在题型、题量、分值,知识分布和覆盖面上保持了稳定,与2001年类似,结构基本合理。主要考查的知识点分布如下表:

初等数学的基本知识是考生进入高等学校继续学习的基础,考查时既注意全面、更注重突出重点,对支撑学科知识体系的主干知识,考查时保证较高的比例并保持必要的深度。函数作为高中代数最基本的、最重要的内容,在理科试卷的第9、10、13、16、17、21题中,从不同侧面进行了考查,卷面分数为42分,占总分的28%。不等式作为高中的基本内容,是考查一个学生有无继续学好数学的潜能的重要标志,在理科试卷的第2、3、19、20、22题中都有体现。卷面分数为48分,占总分的32%。函数与不等式共90分,占总分的60%,占代数102分的88.2%,体现了对重点知识的重点考查。复数和参数方程各仅考查了一个5分的选择题,而极坐标则没有考查,这些都值得关注。

2.深化能力立意,加强探索能力、研究能力和应用能力的考查。

“以能力立意命题”是数学的学科特点和考试目标所决定的。今年的试题,除通过不同的数学知识载体,全面考查思维能力、运算能力和空间想象能力之外,结合课程改革的特点,更加重视了对数学应用及探索研究能力的考查,更能充分反映出考生的创新意识和实践能力。上述思想在理科第12、18、20题中都有体现,卷面分为29分,占总分的19.3%;文科则体现在第13、17、18、19、22题中,卷面分为共52分,占总分的34.7%;值得注意的是文科第22题剪贴问题,构思新颖,又源于教材,能充分考查学生的空间想象能力、动手操作能力和探索能力。这样的题目自恢复高考以来从未出现,出乎许多人意料之外,但确又在情理之中,符合目前课程改革的需要,是很好的导向。

3.均衡试卷结构,形成贴近教学实际的合理布局。

2002年高考的数学试卷,努力做到了全卷的均衡,充分考虑到了试卷长度与考试时间的关系,基本题型与综合题型的匹配,能力考查深度与教学实际的相关程度等问题,形成了合理稳定的布局。试题表述注意了考生熟悉的语言和表述方式,有助于考生的阅读理解;试题背景的取向注意靠近教材和考生的生活实际,让考生处于一个较为平和、熟悉的环境中,增强了解题的信心。同时,较好地控制了计算量,避免了繁琐运算。一些貌似有较长运算过程的试题都有不同的解题思维层次,可用简便的方法计算以节省时间,这样能保证考生有较多的时间和精力去做解答题,有利于考查不同层次的学生。

4.注意了文、理科考生的差异

今年的数学试题在2001年基础上发生了重大的变化。去年总体上,选择、填空共16个题有10个完全相同,而今年的解答题则完全不同。这充分考虑到文、理科考生的差异,受到了中学教师的好评。文、理科的具体特点是:

(1)理科的整体难度与去年相当,但重心转移到对外开放、运动和探索性问题的考查。

(2)运算量略有减少,较为适中,没有前两年的繁复运算。

(3)试题入门容易完成难,解答题设计了一定的坡度,能考查出不同层次学生的数学水平和数学素质。今年理科题中没有类似于2001年的不等式证明那种使绝大部分考生无法下手的题目,每道题都易找到切入点,但是要很好地完成却有相当难度。

(4)文科数学试题总体设计有新意,能够考查文科学生的数学素养和数学基本素质,总体难度有所下降,解答题尤为明显。20题将理科题中的a换为2后,大大降低了难度。但文科解答题较活,应用、开放、探索型题目较多,共52分,要很好完成也有一定难度。如18题的相遇问题看似用初中或小学知识即能解决,但要解答好第(Ⅱ)问也不容易。

(二)对中学教学的启示

1. 立足课本,加强“三基”,充分重视教材的基础作用

综观2002年高考教学试卷,相当数量的基本题源于教材,即使综合题也是基础知识的加工、整合与发展,充分表现出教材的基础作用。复习阶段应把各个知识点按照一定的观点和方法加以整理,形成知识体系。如理科21题的第(Ⅱ)问实质是分段二次函数含参的最值问题,但很多考生看到绝对值和参数时无从下手,这说明基本功不扎实,转化能力差。

教材研究要发挥教材的多种功能和效应。教材首先是学生获得知识结论的“教本”,数学概念、定理、公式的积累组成知识整体,随着学习的深入,知识积累的增多,各部分知识在各自发展中的纵向联系和部分知识之间的横向联系日益密切,不失时机地筑知识网络,并在各个阶段逐步扩充和完善,是扎实掌握基础知识的重要一课,其中教材的导言和小结中有很多有益的启示。基本数学思想和数学方法在知识形成的过程中发展,数学能力在知识、方法和技能的学习过程中提高,这是教材的又一个重要效应。许多重要的例题和习题反应相关数学理论的本质属性,蕴含着数学的重要的思维方法和思想精髓,对这类数学问题,通过类比、延伸、迁移、拓广,提出新的问题并加以解决,能有效巩固基础知识,发展数学能力,发挥教材的扩张效应。

2. 树立知识的应某某,重视创新意识的培养

这里所说的“应用”不仅仅是指应用题的教学,“创新”也不是刻意寻求新题。文科22题(剪贴问题)就充分体现了课程改革的方向,也符合当今时代的需求,“死读书,读死书”的人是很难完成的。考察学生探索能力和解决实际问题的能力,是深化高考数学科内容改革的重要方向。在数学教学中,要把培养学生的创新意识和实践能力作为基本目标,充分发挥学生的主体作用,让学生多动脑、动手,鼓励学生独立思考,增强用数学的意识,逐步学会用已有的数学知识探索新的问题,将实际问题抽象为数学模型,并加以解决。

解答数学应用问题,是创新意识和实践能力的重要表现。数学应用的研究,要关注生活环境、社会现实、经济建设、科技发展等各个方面,从中提炼出有社会价值的应用背景,促进学生不断追求新知,独立思考,增强应用数学的意识,学会将实际问题抽象为数学问题。这个过程,就是创新意识和实践能力深化、提高的过程。它不仅仅是参加考试的需要,更重要的是可以促进学生综合文化素质的形成和提高。

3. 注意数学思想方法的浸润和渗透

今年高考题在全面考查数学思想方法的同时,重点考查了分类讨论的思想,这也是考生的薄弱环节。在平时教学中,应将数学方法、数学思想有意识地渗透到各单元、章节中去。如集合、函数、复数等内容,要侧重数形结合的思想;在数列,含参不等式的解法,二次方程曲线等 内容的教学中则要侧重渗透分类讨论的思想;在不等式解法、复数、立体几何的教学中应侧重渗透归纳与转化的思想。

4. 从高考试题变化看新课程变革方向

2002年“3+X”高考试题在2001年基础上保持了相对稳定,但稳中有变,变化的总趋势是:初步体现了新的课程理念,突出创新精神和实践能力的考查;删除繁、难、偏、旧的知识内容,加强方法、应用、探索等方面的内容;在突出考查各学科基础的、核心的、可再生性知识的基础上,更加强调与现实生活的联系,强调实际应用,强调与学生生活经验的联系,实践环节大大增加;缩短试卷长度,留足考生更多的思考时间,有利于考查学生创造性思维能力。

数学试题更加突出考查数学思想。今年的数学试题更加重视数学思想和方法的考查,全卷突出考查“分类讨论思想”、“数形结合思想”、“函数方程思想”、“转化思想方法”等。 理科20题考查“从保护城市环境出发,计算城市新增汽车数量”,体现了关于方法的知识是 世界上最宝贵的知识,“让数学进走生活”的新课程理念。文科22题要求学生设计一种拼剪方法,首次出现附加题的加分,给学生自由发挥的空间,突出考查空间想象、动手能力和类比、迁移的数学思想方法,体现了“创设问题、提出问题、操作实验、探索规律、应用规律、解决实际问题”的新的学习方式变革的方向。

对新课程教学方式产生的导向是:在新课程条件下,教师在教学过程中应与学生积极互动、共同发展,注重学生的独立性和自主性,引导学生质疑、调查、探究,在实践中学习。教师的教学方式,重要是的要创设丰富的教学情境,信任学生的学习能力,营造一个轻松、宽容的课堂气氛;教学活动具有创造性,可以结合课堂具体情境和学生的兴趣即兴发挥;知识的学习不必遵循固定不变的程序,应该根据学生的需要因势利导;学生的学习是一个主动建构的过程,不必将知识作为“绝对的客观真理”强加给学生。

5. 解题研究要重在解题方向和策略、推理研究要着眼抽象思维水平的提高

“问题是数学的心脏”。学习数学的过程与数学解题紧密相关,而数学能力的提高在于解题的质量而非解题的数量,解题要重在研究解题的方向和策略。要善于从题目的条件和求解(或求证)的过程中提取有用的信息,作为于记忆系统中的数学认知结构,提取相关的知识,推动题目信息的延伸,归结到某个确定的数学关系,从而形成一个解题的行动序列,这就是解题方向。题目信息与不同数学知识的结合,可能会形成多个解题方向,先取其中简捷的路径,就得到题目的最优解法。解题过程中不断进行这样的思考和操作,将使数学能力得到有效地提高。

二、2003届备考复习建议

由高考的性质决定,高考复习中,既要高度重视基础,又要着重对学生数学能力与综合素质的培养与提高,因而确定以夯实“三基”为根本,强化训练为手段、培养能力为目的的复习指导思想。有了明确的复习指导思想,增强复习行为的自觉性、目的性,提高复习效率。下面为论述方便分门别类,实际上复习自始至终是一个整体,应有全局观。

(一)如何夯实“三基”

1. 重视对《考试说明》的研究,并结合对近年高考题的认真分析,深化对高考题的认识

高中数学总复习是策略性高,针对性强的一项工作。研究《考试说明》中对考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:

(1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容。

(2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法)。应特别重视《考试说明》中新增 的对知识和能力的考查注意如下几点:

①对数学基础知识的考查,要求全面又突出重点。注重学科的内在联系和知识的综合。重点知识是支撑学科知识体系的主要内容,考查时要保持较高比例,并达到必要的深度,构成数学试题的主体。学科的内在联系,包括代数、立体几何、平面解析几何三个学科之间的相互联系及各自发展过程中,各部分知识间的纵向联系。知识的综合性,则是从学科的整体高度 考虑问题,在知识网络交汇点设计试题。

②数学思想和方法是数学知识在高层次上的抽象的概括,它蕴涵在数学知识发生、发展和应用的过程中。因此,对于数学思想和方法的考查必然要与数学知识的考查结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度。考查时,要从学科整体意义 和思想含义上立意,注意通性通法,谈化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度。

③对能力的考查,以思维能力为核心,全面考查各种能力,强调探究性、综合性、应用性,切合考生的实际。运算能力是思想能力与运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是以含字母的运算为主,同时要兼顾对算理和逻辑推理的考查。空间想象能力是对空间形式的观察、分析、抽象的能力,图形的处理与图形的变换都要注意与推理相结合。分析问题和解决问题的能力是上述三种基本数学能力的综合体现,对数学能力的考查要以数学基础知识、数学思想和方法为基础,加强思维品质的考查,对数学应用问题,要把握好提出问题所涉及的数学知识和方法的深度和广度,要切合我国中学数学教学的实际。

④数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对能力的考查,在强调综合性的同时,重视试题的层次性,合理调控综合程度,坚持多角度、多层次的考查。

再结合近年,特别是今年高考试题的分析研究和学习领会教育部考试中心对试题的分析报告,您会有所体会并认同如下策略:

重视教材,狠抓基础是根本;立足中低档,降低重心是策略;过程中发展能力,提高素质是核心。

2. 重视课本,狠抓基础,建构学生的良好知识结构和认知结构

良好的知识结构是高效应用知识的保证。以课本为主,重新全面梳理知识、方法,注意知识结构的重组与概括,揭示其内在的联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识、方法,而是自觉地将共前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,融汇代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。如面对代数中的“四个二次”:二次三项式, 一元二次方程,一元二次不等式,二次函数时,以二次方程为基础、二次函数为主线,通过联系解析几何、三角函数、带参数的不等式等典型重要问题,建构知识,发展能力。

3.精选题、练得法、引得当、讲到位

夯实“三基”与能力培养都离不开解题训练,因而在复习的全过程中,我们必须做到选题恰当、训练科学、引伸创新、讲解到位。

(1)精选题,练得法

我们在选题的典型性、目的性、针对性、灵活性等原则指导下,突出重点,锤练“三基”。要善于从不同的角度、不同的方位、不同的层次选编习题。训练的层次由浅入深,题型由客观到主观,由封闭到开放,始终紧扣基础知识,在动态中训练了“三基”,真正使学生做到 “解一题,会一类”。

要做到选题精、练得法,在师生共做的情况下,多进行解题的回顾、总结,概括是提炼基本思想、基本方法,形成一些有益的“思维块”。要做到选题精、练得法,还应注意针对学生弱点以及易迷惑、易出错的问题,多加训练,在解题实践中,弥补不足,在辨析中,逐步解决“会而不对,对而不全”的老大难问题。

(2)引得当

贴近、源于课本是近年来高考题的又一特点,这就要求我们深入挖掘教材,如变换课本中例习题的背景、改变图形位置、增减题设或结论等,达到深化“三基”、培养能力的目的。要引得当,我们还要注意充分发挥典型题的作用,同时深化推广或变式变形以及引伸创新。

(3)讲到位

要讲到位,复习中就要重视过程,重视知识形成的过程,融会贯通前后知识的联系,切忌孤立对待知识、思想和方法。要讲到位,还要重视思维过程的指导,揭示暴露如何想?怎样做?谈“来龙去脉”,在谈思维的过程中,还应重视通性通法。

(二)基本复习方法建议

1.复习、梳理、建构知识系统

高考数学试题十分重视对学生能力的考查,而这种能力是以整体的、完善的知识结构为前提的。国家教育部考试中心试题评价组《全国普通高考数学试题评价报告》明确指出:“试题注意数学各部分内容的联系,具有一定的综合性。加强数学各分支知识间内在联系的考查。……要求考生把数学各部分作为一个整体来学习、掌握,而不机械地分为几块。这个特点不但在解答题中突出,而且有选择题中也有所体现。”

传统的数学总复习是将各章划分为若干课时,一个课时一个中心议题。这种做法有它的可取之处,但其不足也是很明显的:第一,它将完整的知识结构切碎了、拆散了,不利于形成完整的知识体系;第二,它受制于各个课时的长度,而各个议题的容量并不都是相等的,那么在复习中势必将短的拉长,将长的截短,难以做到重点突出;第三,它每课时都要追求“高潮”,可是这些高潮与高考的要求又不尽吻合,因而造成教学的浪费;第四,每个课时都要 配置选择题、填空题和解答题,而事实上有的议题并不需要设置解答题;第五,它受每个课时的制约,综合运用各部分知识的空间较狭窄。

以章为一个单元,先在学生复习课本知识的基础上,由师生共同串讲梳理,从而建构既以本章为主线又广涉有关各章的知识网络系统,其次让学生进行客观性题目的练习,再讲练主观性题目。这样的做法可以在更广阔的知识空间里自由驰骋,有利于培养学生整体驾驭知识的能力,它不受每个课时的约束,从全章考虑进行统筹安排,更便于重点、热点的强化,难点的突破,而且做到经济实惠,可取得最大的复习效益。

2.复习课的讲授更要讲究科学性和艺术性

有人认为数学复习课由于时间紧、内容多而无法讲究科学性和艺术性,只得采用“大容量、快节奏”的方式,似乎一切数学原则到了这时都无须遵循也无法遵循了,殊不知,为了高效率地完成总复习的繁重任务,更应该讲究教学的科学性和艺术性。

(1)在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则

教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好……让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西。”这就是说,数学课堂教学必须废除“注入式”、“满堂灌”的教法。复习课也不能由教师包某某,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极地探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性。作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心。复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。我们可采用“焦点访谈”法较好地 解决这个问题,大多数题目其解法是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”,我们大可不必在外围处花精力和时间去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通。

(2)趣浓情深,提高解题教学的艺术性

我们不能依靠高考的重压及学生强烈的升学欲望来驱使学生去解数学题。在总复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然,让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”。

一道好的数学题,即便具有相当的难度,它却象一段引人入胜的故事,又象一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处。“山重水覆”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,变苦学为乐学;三是在学法上教给学生“点金术”等等。

(3)不依靠题海取胜,要注重题目的质量和处理水平

由于“应试教育”的影响,不少数学教师采取题海战术、猜题押题等手段来应付升 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 量的分析,建立档案。了解学生,才有利于个别辅导,因材施教,对于好的学生,重在提高;对于差的学生,重在补缺 。

5.要把提高数学能力与培养数学素养有机结合起来。

因为它是基本能力的高层次的反映,而这又需要从运算准确、表达清楚、推理严密等基本功的强化着手,通过严格训练学生从审题、解答到反思,独立完成解题全过程来实现。复习的重点应放在研究、研讨上,而不是灌输,重在通过复习提高学生的悟性,启发引导学生自己去感悟、提高。

6.坚持“面向中等生,重视中低档题”的基本方针。

重视基础,立足双基,着眼于能力的提高。随着高校招生并轨政策的实施,分数线下降,“踩线生”的界定也随之变化,在一般学校中,中等程度的学生都应该划归此列,中等生的提高意味着上线率的提高,对此应引起充分注意。同 时要注意突出学生的整体优势,对总分高、而数学较差的学生应采取相应措施。

7.注重学生的心理辅导和心理调节。

教师应对学生出现的各种心理问题及时给予有针对性的辅导、咨询,帮助他们解决心理困扰,以平常心对待高考,提高学生面对高考的心理随能力。还应结合实际教给学生应试的一些基本策略和临场发挥的技巧、经验,要加强考试的常规要求训练。

[文章尾部最后500字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。

  1. 小学四年级英语学科期末成绩分析
  2. 三、六年级英语期中考试试卷分析
  3. 八年级物理期中测试-试卷分析模板
  4. 教师自我教学能力诊断报告模板
  5. 五年级数学质量分析
  6. 大学生职业规划
  7. 提升在校大学生投资理财能力的建议
  8. 个人研修计划模版
  9. 教师个人信息技术应用能力提升计划
  10. 三年级道德与法治试卷分析
  11. 七(8)班英语科期末质量分析
  12. 秋季期小学学生学业发展水平调研检测 三年级数学质量分析
  13. 全国高考英语试题分析

以上为《高考数学试题分析暨届高三复习建议》的无排版文字预览,完整内容请下载

高考数学试题分析暨届高三复习建议由用户“ybbdick”分享发布,转载请注明出处
XXXXX猜你喜欢
回顶部 | 首页 | 电脑版 | 举报反馈 更新时间2021-09-27 05:38:17
if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/42/9a/116798.html'}ipt>if(location.host!='wap.kao110.com'){location.href='http://wap.kao110.com/html/42/9a/116798.html'}ipt>